Procedural Content Generation via Generative Artificial Intelligence Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.09013
The attempt to utilize machine learning in PCG has been made in the past. In this survey paper, we investigate how generative artificial intelligence (AI), which saw a significant increase in interest in the mid-2010s, is being used for PCG. We review applications of generative AI for the creation of various types of content, including terrains, items, and even storylines. While generative AI is effective for PCG, one significant issues it faces is that building high-performance generative AI requires vast amounts of training data. Because content generally highly customized, domain-specific training data is scarce, and straightforward approaches to generative AI models may not work well. For PCG research to advance further, issues related to limited training data must be overcome. Thus, we also give special consideration to research that addresses the challenges posed by limited training data.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.09013
- https://arxiv.org/pdf/2407.09013
- OA Status
- green
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400667193
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400667193Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.09013Digital Object Identifier
- Title
-
Procedural Content Generation via Generative Artificial IntelligenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-12Full publication date if available
- Authors
-
Xinyu Mao, Wanli Yu, Kazunori D Yamada, Michael R. ZielewskiList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.09013Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.09013Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.09013Direct OA link when available
- Concepts
-
Generative grammar, Content (measure theory), Artificial intelligence, Computer science, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400667193 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.09013 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.09013 |
| ids.openalex | https://openalex.org/W4400667193 |
| fwci | |
| type | preprint |
| title | Procedural Content Generation via Generative Artificial Intelligence |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13643 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9787999987602234 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3320 |
| topics[0].subfield.display_name | Political Science and International Relations |
| topics[0].display_name | Artificial Intelligence in Law |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9549999833106995 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7319516539573669 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C2778152352 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6119679808616638 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5165061 |
| concepts[1].display_name | Content (measure theory) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6003963351249695 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5290188789367676 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.14900049567222595 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C134306372 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[5].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.7319516539573669 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/content |
| keywords[1].score | 0.6119679808616638 |
| keywords[1].display_name | Content (measure theory) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6003963351249695 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5290188789367676 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.14900049567222595 |
| keywords[4].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.09013 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.09013 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.09013 |
| locations[1].id | doi:10.48550/arxiv.2407.09013 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.09013 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100604343 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1939-046X |
| authorships[0].author.display_name | Xinyu Mao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mao, Xinyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5058429956 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1299-6223 |
| authorships[1].author.display_name | Wanli Yu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu, Wanli |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5050925044 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kazunori D Yamada |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yamada, Kazunori D |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5061612884 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0996-0051 |
| authorships[3].author.display_name | Michael R. Zielewski |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Zielewski, Michael R. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.09013 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Procedural Content Generation via Generative Artificial Intelligence |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13643 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9787999987602234 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3320 |
| primary_topic.subfield.display_name | Political Science and International Relations |
| primary_topic.display_name | Artificial Intelligence in Law |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2380075625, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.09013 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.09013 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.09013 |
| primary_location.id | pmh:oai:arXiv.org:2407.09013 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.09013 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.09013 |
| publication_date | 2024-07-12 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 27 |
| abstract_inverted_index.AI | 45, 62, 77, 99 |
| abstract_inverted_index.In | 14 |
| abstract_inverted_index.We | 40 |
| abstract_inverted_index.be | 118 |
| abstract_inverted_index.by | 133 |
| abstract_inverted_index.in | 6, 11, 30, 32 |
| abstract_inverted_index.is | 35, 63, 72, 92 |
| abstract_inverted_index.it | 70 |
| abstract_inverted_index.of | 43, 49, 52, 81 |
| abstract_inverted_index.to | 2, 97, 108, 113, 126 |
| abstract_inverted_index.we | 18, 121 |
| abstract_inverted_index.For | 105 |
| abstract_inverted_index.PCG | 7, 106 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 57, 94 |
| abstract_inverted_index.for | 38, 46, 65 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.how | 20 |
| abstract_inverted_index.may | 101 |
| abstract_inverted_index.not | 102 |
| abstract_inverted_index.one | 67 |
| abstract_inverted_index.saw | 26 |
| abstract_inverted_index.the | 12, 33, 47, 130 |
| abstract_inverted_index.PCG, | 66 |
| abstract_inverted_index.PCG. | 39 |
| abstract_inverted_index.also | 122 |
| abstract_inverted_index.been | 9 |
| abstract_inverted_index.data | 91, 116 |
| abstract_inverted_index.even | 58 |
| abstract_inverted_index.give | 123 |
| abstract_inverted_index.made | 10 |
| abstract_inverted_index.must | 117 |
| abstract_inverted_index.that | 73, 128 |
| abstract_inverted_index.this | 15 |
| abstract_inverted_index.used | 37 |
| abstract_inverted_index.vast | 79 |
| abstract_inverted_index.work | 103 |
| abstract_inverted_index.(AI), | 24 |
| abstract_inverted_index.Thus, | 120 |
| abstract_inverted_index.While | 60 |
| abstract_inverted_index.being | 36 |
| abstract_inverted_index.data. | 83, 136 |
| abstract_inverted_index.faces | 71 |
| abstract_inverted_index.past. | 13 |
| abstract_inverted_index.posed | 132 |
| abstract_inverted_index.types | 51 |
| abstract_inverted_index.well. | 104 |
| abstract_inverted_index.which | 25 |
| abstract_inverted_index.highly | 87 |
| abstract_inverted_index.issues | 69, 111 |
| abstract_inverted_index.items, | 56 |
| abstract_inverted_index.models | 100 |
| abstract_inverted_index.paper, | 17 |
| abstract_inverted_index.review | 41 |
| abstract_inverted_index.survey | 16 |
| abstract_inverted_index.Because | 84 |
| abstract_inverted_index.advance | 109 |
| abstract_inverted_index.amounts | 80 |
| abstract_inverted_index.attempt | 1 |
| abstract_inverted_index.content | 85 |
| abstract_inverted_index.limited | 114, 134 |
| abstract_inverted_index.machine | 4 |
| abstract_inverted_index.related | 112 |
| abstract_inverted_index.scarce, | 93 |
| abstract_inverted_index.special | 124 |
| abstract_inverted_index.utilize | 3 |
| abstract_inverted_index.various | 50 |
| abstract_inverted_index.building | 74 |
| abstract_inverted_index.content, | 53 |
| abstract_inverted_index.creation | 48 |
| abstract_inverted_index.further, | 110 |
| abstract_inverted_index.increase | 29 |
| abstract_inverted_index.interest | 31 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.requires | 78 |
| abstract_inverted_index.research | 107, 127 |
| abstract_inverted_index.training | 82, 90, 115, 135 |
| abstract_inverted_index.addresses | 129 |
| abstract_inverted_index.effective | 64 |
| abstract_inverted_index.generally | 86 |
| abstract_inverted_index.including | 54 |
| abstract_inverted_index.overcome. | 119 |
| abstract_inverted_index.terrains, | 55 |
| abstract_inverted_index.approaches | 96 |
| abstract_inverted_index.artificial | 22 |
| abstract_inverted_index.challenges | 131 |
| abstract_inverted_index.generative | 21, 44, 61, 76, 98 |
| abstract_inverted_index.mid-2010s, | 34 |
| abstract_inverted_index.customized, | 88 |
| abstract_inverted_index.investigate | 19 |
| abstract_inverted_index.significant | 28, 68 |
| abstract_inverted_index.storylines. | 59 |
| abstract_inverted_index.applications | 42 |
| abstract_inverted_index.intelligence | 23 |
| abstract_inverted_index.consideration | 125 |
| abstract_inverted_index.domain-specific | 89 |
| abstract_inverted_index.straightforward | 95 |
| abstract_inverted_index.high-performance | 75 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |