Procedural Knowledge in Pretraining Drives Reasoning in Large Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.12580
The capabilities and limitations of Large Language Models have been sketched out in great detail in recent years, providing an intriguing yet conflicting picture. On the one hand, LLMs demonstrate a general ability to solve problems. On the other hand, they show surprising reasoning gaps when compared to humans, casting doubt on the robustness of their generalisation strategies. The sheer volume of data used in the design of LLMs has precluded us from applying the method traditionally used to measure generalisation: train-test set separation. To overcome this, we study what kind of generalisation strategies LLMs employ when performing reasoning tasks by investigating the pretraining data they rely on. For two models of different sizes (7B and 35B) and 2.5B of their pretraining tokens, we identify what documents influence the model outputs for three simple mathematical reasoning tasks and contrast this to the data that are influential for answering factual questions. We find that, while the models rely on mostly distinct sets of data for each factual question, a document often has a similar influence across different reasoning questions within the same task, indicating the presence of procedural knowledge. We further find that the answers to factual questions often show up in the most influential data. However, for reasoning questions the answers usually do not show up as highly influential, nor do the answers to the intermediate reasoning steps. When we characterise the top ranked documents for the reasoning questions qualitatively, we confirm that the influential documents often contain procedural knowledge, like demonstrating how to obtain a solution using formulae or code. Our findings indicate that the approach to reasoning the models use is unlike retrieval, and more like a generalisable strategy that synthesises procedural knowledge from documents doing a similar form of reasoning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.12580
- https://arxiv.org/pdf/2411.12580
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404574036
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404574036Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.12580Digital Object Identifier
- Title
-
Procedural Knowledge in Pretraining Drives Reasoning in Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-19Full publication date if available
- Authors
-
Laura Ruis, Maximilian Mozes, Jong Bin Bae, Siddhartha Rao Kamalakara, Dwarak Talupuru, A. Locatelli, Robert Kirk, Tim Rocktäschel, Edward Grefenstette, Max BartoloList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.12580Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.12580Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.12580Direct OA link when available
- Concepts
-
Computer science, Psychology, Natural language processing, Cognitive psychology, Cognitive scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404574036 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.12580 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.12580 |
| ids.openalex | https://openalex.org/W4404574036 |
| fwci | 0.0 |
| type | preprint |
| title | Procedural Knowledge in Pretraining Drives Reasoning in Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9902999997138977 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9610000252723694 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T10215 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9495999813079834 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Semantic Web and Ontologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5535658597946167 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C15744967 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3443676233291626 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[1].display_name | Psychology |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.33190488815307617 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C180747234 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3264217972755432 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[3].display_name | Cognitive psychology |
| concepts[4].id | https://openalex.org/C188147891 |
| concepts[4].level | 1 |
| concepts[4].score | 0.32090920209884644 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[4].display_name | Cognitive science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5535658597946167 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/psychology |
| keywords[1].score | 0.3443676233291626 |
| keywords[1].display_name | Psychology |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.33190488815307617 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[3].score | 0.3264217972755432 |
| keywords[3].display_name | Cognitive psychology |
| keywords[4].id | https://openalex.org/keywords/cognitive-science |
| keywords[4].score | 0.32090920209884644 |
| keywords[4].display_name | Cognitive science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.12580 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.12580 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.12580 |
| locations[1].id | doi:10.48550/arxiv.2411.12580 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.12580 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5060010430 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Laura Ruis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ruis, Laura |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038732160 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8138-3792 |
| authorships[1].author.display_name | Maximilian Mozes |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mozes, Maximilian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5027005127 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3913-1011 |
| authorships[2].author.display_name | Jong Bin Bae |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bae, Juhan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5054907218 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Siddhartha Rao Kamalakara |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kamalakara, Siddhartha Rao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5098901824 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Dwarak Talupuru |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Talupuru, Dwarak |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5086062922 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7122-3311 |
| authorships[5].author.display_name | A. Locatelli |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Locatelli, Acyr |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5051243028 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6541-5915 |
| authorships[6].author.display_name | Robert Kirk |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Kirk, Robert |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5079315903 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Tim Rocktäschel |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Rocktäschel, Tim |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5023508792 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1164-8809 |
| authorships[8].author.display_name | Edward Grefenstette |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Grefenstette, Edward |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5018864006 |
| authorships[9].author.orcid | https://orcid.org/0009-0007-3301-7895 |
| authorships[9].author.display_name | Max Bartolo |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Bartolo, Max |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.12580 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Procedural Knowledge in Pretraining Drives Reasoning in Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9902999997138977 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.12580 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.12580 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.12580 |
| primary_location.id | pmh:oai:arXiv.org:2411.12580 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.12580 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.12580 |
| publication_date | 2024-11-19 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 167, 171, 255, 278, 288 |
| abstract_inverted_index.On | 24, 36 |
| abstract_inverted_index.To | 84 |
| abstract_inverted_index.We | 150, 188 |
| abstract_inverted_index.an | 19 |
| abstract_inverted_index.as | 216 |
| abstract_inverted_index.by | 100 |
| abstract_inverted_index.do | 212, 220 |
| abstract_inverted_index.in | 12, 15, 64, 200 |
| abstract_inverted_index.is | 272 |
| abstract_inverted_index.of | 4, 54, 61, 67, 91, 111, 119, 161, 185, 291 |
| abstract_inverted_index.on | 51, 157 |
| abstract_inverted_index.or | 259 |
| abstract_inverted_index.to | 33, 47, 78, 140, 194, 223, 253, 267 |
| abstract_inverted_index.up | 199, 215 |
| abstract_inverted_index.us | 71 |
| abstract_inverted_index.we | 87, 123, 229, 240 |
| abstract_inverted_index.(7B | 114 |
| abstract_inverted_index.For | 108 |
| abstract_inverted_index.Our | 261 |
| abstract_inverted_index.The | 0, 58 |
| abstract_inverted_index.and | 2, 115, 117, 137, 275 |
| abstract_inverted_index.are | 144 |
| abstract_inverted_index.for | 131, 146, 163, 206, 235 |
| abstract_inverted_index.has | 69, 170 |
| abstract_inverted_index.how | 252 |
| abstract_inverted_index.nor | 219 |
| abstract_inverted_index.not | 213 |
| abstract_inverted_index.on. | 107 |
| abstract_inverted_index.one | 26 |
| abstract_inverted_index.out | 11 |
| abstract_inverted_index.set | 82 |
| abstract_inverted_index.the | 25, 37, 52, 65, 74, 102, 128, 141, 154, 179, 183, 192, 201, 209, 221, 224, 231, 236, 243, 265, 269 |
| abstract_inverted_index.top | 232 |
| abstract_inverted_index.two | 109 |
| abstract_inverted_index.use | 271 |
| abstract_inverted_index.yet | 21 |
| abstract_inverted_index.2.5B | 118 |
| abstract_inverted_index.35B) | 116 |
| abstract_inverted_index.LLMs | 28, 68, 94 |
| abstract_inverted_index.When | 228 |
| abstract_inverted_index.been | 9 |
| abstract_inverted_index.data | 62, 104, 142, 162 |
| abstract_inverted_index.each | 164 |
| abstract_inverted_index.find | 151, 190 |
| abstract_inverted_index.form | 290 |
| abstract_inverted_index.from | 72, 285 |
| abstract_inverted_index.gaps | 44 |
| abstract_inverted_index.have | 8 |
| abstract_inverted_index.kind | 90 |
| abstract_inverted_index.like | 250, 277 |
| abstract_inverted_index.more | 276 |
| abstract_inverted_index.most | 202 |
| abstract_inverted_index.rely | 106, 156 |
| abstract_inverted_index.same | 180 |
| abstract_inverted_index.sets | 160 |
| abstract_inverted_index.show | 41, 198, 214 |
| abstract_inverted_index.that | 143, 191, 242, 264, 281 |
| abstract_inverted_index.they | 40, 105 |
| abstract_inverted_index.this | 139 |
| abstract_inverted_index.used | 63, 77 |
| abstract_inverted_index.what | 89, 125 |
| abstract_inverted_index.when | 45, 96 |
| abstract_inverted_index.Large | 5 |
| abstract_inverted_index.code. | 260 |
| abstract_inverted_index.data. | 204 |
| abstract_inverted_index.doing | 287 |
| abstract_inverted_index.doubt | 50 |
| abstract_inverted_index.great | 13 |
| abstract_inverted_index.hand, | 27, 39 |
| abstract_inverted_index.model | 129 |
| abstract_inverted_index.often | 169, 197, 246 |
| abstract_inverted_index.other | 38 |
| abstract_inverted_index.sheer | 59 |
| abstract_inverted_index.sizes | 113 |
| abstract_inverted_index.solve | 34 |
| abstract_inverted_index.study | 88 |
| abstract_inverted_index.task, | 181 |
| abstract_inverted_index.tasks | 99, 136 |
| abstract_inverted_index.that, | 152 |
| abstract_inverted_index.their | 55, 120 |
| abstract_inverted_index.this, | 86 |
| abstract_inverted_index.three | 132 |
| abstract_inverted_index.using | 257 |
| abstract_inverted_index.while | 153 |
| abstract_inverted_index.Models | 7 |
| abstract_inverted_index.across | 174 |
| abstract_inverted_index.design | 66 |
| abstract_inverted_index.detail | 14 |
| abstract_inverted_index.employ | 95 |
| abstract_inverted_index.highly | 217 |
| abstract_inverted_index.method | 75 |
| abstract_inverted_index.models | 110, 155, 270 |
| abstract_inverted_index.mostly | 158 |
| abstract_inverted_index.obtain | 254 |
| abstract_inverted_index.ranked | 233 |
| abstract_inverted_index.recent | 16 |
| abstract_inverted_index.simple | 133 |
| abstract_inverted_index.steps. | 227 |
| abstract_inverted_index.unlike | 273 |
| abstract_inverted_index.volume | 60 |
| abstract_inverted_index.within | 178 |
| abstract_inverted_index.years, | 17 |
| abstract_inverted_index.ability | 32 |
| abstract_inverted_index.answers | 193, 210, 222 |
| abstract_inverted_index.casting | 49 |
| abstract_inverted_index.confirm | 241 |
| abstract_inverted_index.contain | 247 |
| abstract_inverted_index.factual | 148, 165, 195 |
| abstract_inverted_index.further | 189 |
| abstract_inverted_index.general | 31 |
| abstract_inverted_index.humans, | 48 |
| abstract_inverted_index.measure | 79 |
| abstract_inverted_index.outputs | 130 |
| abstract_inverted_index.similar | 172, 289 |
| abstract_inverted_index.tokens, | 122 |
| abstract_inverted_index.usually | 211 |
| abstract_inverted_index.However, | 205 |
| abstract_inverted_index.Language | 6 |
| abstract_inverted_index.applying | 73 |
| abstract_inverted_index.approach | 266 |
| abstract_inverted_index.compared | 46 |
| abstract_inverted_index.contrast | 138 |
| abstract_inverted_index.distinct | 159 |
| abstract_inverted_index.document | 168 |
| abstract_inverted_index.findings | 262 |
| abstract_inverted_index.formulae | 258 |
| abstract_inverted_index.identify | 124 |
| abstract_inverted_index.indicate | 263 |
| abstract_inverted_index.overcome | 85 |
| abstract_inverted_index.picture. | 23 |
| abstract_inverted_index.presence | 184 |
| abstract_inverted_index.sketched | 10 |
| abstract_inverted_index.solution | 256 |
| abstract_inverted_index.strategy | 280 |
| abstract_inverted_index.answering | 147 |
| abstract_inverted_index.different | 112, 175 |
| abstract_inverted_index.documents | 126, 234, 245, 286 |
| abstract_inverted_index.influence | 127, 173 |
| abstract_inverted_index.knowledge | 284 |
| abstract_inverted_index.precluded | 70 |
| abstract_inverted_index.problems. | 35 |
| abstract_inverted_index.providing | 18 |
| abstract_inverted_index.question, | 166 |
| abstract_inverted_index.questions | 177, 196, 208, 238 |
| abstract_inverted_index.reasoning | 43, 98, 135, 176, 207, 226, 237, 268 |
| abstract_inverted_index.indicating | 182 |
| abstract_inverted_index.intriguing | 20 |
| abstract_inverted_index.knowledge, | 249 |
| abstract_inverted_index.knowledge. | 187 |
| abstract_inverted_index.performing | 97 |
| abstract_inverted_index.procedural | 186, 248, 283 |
| abstract_inverted_index.questions. | 149 |
| abstract_inverted_index.reasoning. | 292 |
| abstract_inverted_index.retrieval, | 274 |
| abstract_inverted_index.robustness | 53 |
| abstract_inverted_index.strategies | 93 |
| abstract_inverted_index.surprising | 42 |
| abstract_inverted_index.train-test | 81 |
| abstract_inverted_index.conflicting | 22 |
| abstract_inverted_index.demonstrate | 29 |
| abstract_inverted_index.influential | 145, 203, 244 |
| abstract_inverted_index.limitations | 3 |
| abstract_inverted_index.pretraining | 103, 121 |
| abstract_inverted_index.separation. | 83 |
| abstract_inverted_index.strategies. | 57 |
| abstract_inverted_index.synthesises | 282 |
| abstract_inverted_index.capabilities | 1 |
| abstract_inverted_index.characterise | 230 |
| abstract_inverted_index.influential, | 218 |
| abstract_inverted_index.intermediate | 225 |
| abstract_inverted_index.mathematical | 134 |
| abstract_inverted_index.demonstrating | 251 |
| abstract_inverted_index.generalisable | 279 |
| abstract_inverted_index.investigating | 101 |
| abstract_inverted_index.traditionally | 76 |
| abstract_inverted_index.generalisation | 56, 92 |
| abstract_inverted_index.qualitatively, | 239 |
| abstract_inverted_index.generalisation: | 80 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |