Production Capacity Prediction and Optimization in the Glycerin Purification Process: A Simulation-Assisted Few-Shot Learning Approach Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/pr12040661
Chemical process control relies on a tightly controlled, narrow range of margins for critical variables, ensuring process stability and safeguarding equipment from potential accidents. The availability of historical process data is limited to a specific setpoint of operation. This challenge raises issues for process monitoring in predicting and adjusting to deviations outside of the range of operational parameters. Therefore, this paper proposes simulation-assisted deep transfer learning for predicting and optimizing the final purity and production capacity of the glycerin purification process. The proposed network is trained by the simulation domain to generate a base feature extractor, which is then fine-tuned using few-shot learning techniques on the target learner to extend the working domain of the model beyond historical practice. The result shows that the proposed model improved prediction performance by 24.22% in predicting water content and 79.72% in glycerin prediction over the conventional deep learning model. Additionally, the implementation of the proposed model identified production and product quality improvements for enhancing the glycerin purification process.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/pr12040661
- https://www.mdpi.com/2227-9717/12/4/661/pdf?version=1711460575
- OA Status
- gold
- Cited By
- 5
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393187254
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393187254Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/pr12040661Digital Object Identifier
- Title
-
Production Capacity Prediction and Optimization in the Glycerin Purification Process: A Simulation-Assisted Few-Shot Learning ApproachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-26Full publication date if available
- Authors
-
Tawesin Jitchaiyapoom, Chanin Panjapornpon, Santi Bardeeniz, M.A. HussainList of authors in order
- Landing page
-
https://doi.org/10.3390/pr12040661Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-9717/12/4/661/pdf?version=1711460575Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-9717/12/4/661/pdf?version=1711460575Direct OA link when available
- Concepts
-
Setpoint, Process (computing), Computer science, Process engineering, Process modeling, Stability (learning theory), Machine learning, Artificial intelligence, Domain (mathematical analysis), Range (aeronautics), Production (economics), Process optimization, Engineering, Mathematics, Operating system, Macroeconomics, Environmental engineering, Economics, Aerospace engineering, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393187254 |
|---|---|
| doi | https://doi.org/10.3390/pr12040661 |
| ids.doi | https://doi.org/10.3390/pr12040661 |
| ids.openalex | https://openalex.org/W4393187254 |
| fwci | 3.18104342 |
| type | article |
| title | Production Capacity Prediction and Optimization in the Glycerin Purification Process: A Simulation-Assisted Few-Shot Learning Approach |
| biblio.issue | 4 |
| biblio.volume | 12 |
| biblio.last_page | 661 |
| biblio.first_page | 661 |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T12282 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9829999804496765 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Mineral Processing and Grinding |
| topics[2].id | https://openalex.org/T14470 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9318000078201294 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Advanced Data Processing Techniques |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C12302492 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7105094194412231 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1752097 |
| concepts[0].display_name | Setpoint |
| concepts[1].id | https://openalex.org/C98045186 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6495217084884644 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[1].display_name | Process (computing) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5873843431472778 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C21880701 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4754854440689087 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2144042 |
| concepts[3].display_name | Process engineering |
| concepts[4].id | https://openalex.org/C76956256 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4723799228668213 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q27610560 |
| concepts[4].display_name | Process modeling |
| concepts[5].id | https://openalex.org/C112972136 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4695717990398407 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[5].display_name | Stability (learning theory) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43770450353622437 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4366241693496704 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C36503486 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43578028678894043 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[8].display_name | Domain (mathematical analysis) |
| concepts[9].id | https://openalex.org/C204323151 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43415671586990356 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[9].display_name | Range (aeronautics) |
| concepts[10].id | https://openalex.org/C2778348673 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42502644658088684 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q739302 |
| concepts[10].display_name | Production (economics) |
| concepts[11].id | https://openalex.org/C115952470 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3416646718978882 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q332172 |
| concepts[11].display_name | Process optimization |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.22915175557136536 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09065726399421692 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C139719470 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[15].display_name | Macroeconomics |
| concepts[16].id | https://openalex.org/C87717796 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q146326 |
| concepts[16].display_name | Environmental engineering |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C146978453 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[18].display_name | Aerospace engineering |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/setpoint |
| keywords[0].score | 0.7105094194412231 |
| keywords[0].display_name | Setpoint |
| keywords[1].id | https://openalex.org/keywords/process |
| keywords[1].score | 0.6495217084884644 |
| keywords[1].display_name | Process (computing) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5873843431472778 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/process-engineering |
| keywords[3].score | 0.4754854440689087 |
| keywords[3].display_name | Process engineering |
| keywords[4].id | https://openalex.org/keywords/process-modeling |
| keywords[4].score | 0.4723799228668213 |
| keywords[4].display_name | Process modeling |
| keywords[5].id | https://openalex.org/keywords/stability |
| keywords[5].score | 0.4695717990398407 |
| keywords[5].display_name | Stability (learning theory) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.43770450353622437 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4366241693496704 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/domain |
| keywords[8].score | 0.43578028678894043 |
| keywords[8].display_name | Domain (mathematical analysis) |
| keywords[9].id | https://openalex.org/keywords/range |
| keywords[9].score | 0.43415671586990356 |
| keywords[9].display_name | Range (aeronautics) |
| keywords[10].id | https://openalex.org/keywords/production |
| keywords[10].score | 0.42502644658088684 |
| keywords[10].display_name | Production (economics) |
| keywords[11].id | https://openalex.org/keywords/process-optimization |
| keywords[11].score | 0.3416646718978882 |
| keywords[11].display_name | Process optimization |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.22915175557136536 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.09065726399421692 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/pr12040661 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201879 |
| locations[0].source.issn | 2227-9717 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-9717 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Processes |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-9717/12/4/661/pdf?version=1711460575 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Processes |
| locations[0].landing_page_url | https://doi.org/10.3390/pr12040661 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5094047984 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-3027-3751 |
| authorships[0].author.display_name | Tawesin Jitchaiyapoom |
| authorships[0].countries | TH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I198105771, https://openalex.org/I4210146814 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Chemical Engineering, Center of Excellence on Petrochemicals and Materials Technology, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I198105771 |
| authorships[0].affiliations[1].raw_affiliation_string | Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand; |
| authorships[0].institutions[0].id | https://openalex.org/I198105771 |
| authorships[0].institutions[0].ror | https://ror.org/05gzceg21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I198105771 |
| authorships[0].institutions[0].country_code | TH |
| authorships[0].institutions[0].display_name | Kasetsart University |
| authorships[0].institutions[1].id | https://openalex.org/I4210146814 |
| authorships[0].institutions[1].ror | https://ror.org/04g4rsk10 |
| authorships[0].institutions[1].type | nonprofit |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210146814 |
| authorships[0].institutions[1].country_code | TH |
| authorships[0].institutions[1].display_name | Petromat |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tawesin Jitchaiyapoom |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Chemical Engineering, Center of Excellence on Petrochemicals and Materials Technology, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand; |
| authorships[1].author.id | https://openalex.org/A5030073664 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7622-9846 |
| authorships[1].author.display_name | Chanin Panjapornpon |
| authorships[1].countries | TH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I198105771, https://openalex.org/I4210146814 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Chemical Engineering, Center of Excellence on Petrochemicals and Materials Technology, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I198105771 |
| authorships[1].affiliations[1].raw_affiliation_string | Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand; |
| authorships[1].institutions[0].id | https://openalex.org/I198105771 |
| authorships[1].institutions[0].ror | https://ror.org/05gzceg21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I198105771 |
| authorships[1].institutions[0].country_code | TH |
| authorships[1].institutions[0].display_name | Kasetsart University |
| authorships[1].institutions[1].id | https://openalex.org/I4210146814 |
| authorships[1].institutions[1].ror | https://ror.org/04g4rsk10 |
| authorships[1].institutions[1].type | nonprofit |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210146814 |
| authorships[1].institutions[1].country_code | TH |
| authorships[1].institutions[1].display_name | Petromat |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chanin Panjapornpon |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Chemical Engineering, Center of Excellence on Petrochemicals and Materials Technology, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand; |
| authorships[2].author.id | https://openalex.org/A5086296544 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3210-9006 |
| authorships[2].author.display_name | Santi Bardeeniz |
| authorships[2].countries | TH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I198105771, https://openalex.org/I4210146814 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Chemical Engineering, Center of Excellence on Petrochemicals and Materials Technology, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I198105771 |
| authorships[2].affiliations[1].raw_affiliation_string | Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand; |
| authorships[2].institutions[0].id | https://openalex.org/I198105771 |
| authorships[2].institutions[0].ror | https://ror.org/05gzceg21 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I198105771 |
| authorships[2].institutions[0].country_code | TH |
| authorships[2].institutions[0].display_name | Kasetsart University |
| authorships[2].institutions[1].id | https://openalex.org/I4210146814 |
| authorships[2].institutions[1].ror | https://ror.org/04g4rsk10 |
| authorships[2].institutions[1].type | nonprofit |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210146814 |
| authorships[2].institutions[1].country_code | TH |
| authorships[2].institutions[1].display_name | Petromat |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Santi Bardeeniz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Chemical Engineering, Center of Excellence on Petrochemicals and Materials Technology, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand; |
| authorships[3].author.id | https://openalex.org/A5088868795 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8473-1529 |
| authorships[3].author.display_name | M.A. Hussain |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; |
| authorships[3].institutions[0].id | https://openalex.org/I33849332 |
| authorships[3].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | University of Malaya |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Mohd Azlan Hussain |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-9717/12/4/661/pdf?version=1711460575 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Production Capacity Prediction and Optimization in the Glycerin Purification Process: A Simulation-Assisted Few-Shot Learning Approach |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W1495927848, https://openalex.org/W4205962020, https://openalex.org/W2620138946, https://openalex.org/W1527771352, https://openalex.org/W90946887, https://openalex.org/W191702426, https://openalex.org/W2994131054, https://openalex.org/W2066553546, https://openalex.org/W4255293822, https://openalex.org/W2891719965 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/pr12040661 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201879 |
| best_oa_location.source.issn | 2227-9717 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-9717 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Processes |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-9717/12/4/661/pdf?version=1711460575 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Processes |
| best_oa_location.landing_page_url | https://doi.org/10.3390/pr12040661 |
| primary_location.id | doi:10.3390/pr12040661 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201879 |
| primary_location.source.issn | 2227-9717 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-9717 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Processes |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-9717/12/4/661/pdf?version=1711460575 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Processes |
| primary_location.landing_page_url | https://doi.org/10.3390/pr12040661 |
| publication_date | 2024-03-26 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4319599851, https://openalex.org/W2888223279, https://openalex.org/W2046726401, https://openalex.org/W2038332742, https://openalex.org/W4313419153, https://openalex.org/W4313479509, https://openalex.org/W3101781665, https://openalex.org/W3084233697, https://openalex.org/W4213345686, https://openalex.org/W4307905268, https://openalex.org/W3089352498, https://openalex.org/W4353048130, https://openalex.org/W6804184373, https://openalex.org/W3136033096, https://openalex.org/W2461045302, https://openalex.org/W2064675550, https://openalex.org/W4310203911, https://openalex.org/W2915300743, https://openalex.org/W4310837319, https://openalex.org/W4223985848, https://openalex.org/W4391074517, https://openalex.org/W2883071431, https://openalex.org/W2954239558, https://openalex.org/W2900068343, https://openalex.org/W2997404503, https://openalex.org/W3176900260, https://openalex.org/W4310634273, https://openalex.org/W3118303912, https://openalex.org/W4391951723, https://openalex.org/W3195598455, https://openalex.org/W3169822846, https://openalex.org/W4229001178, https://openalex.org/W3215002070 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 5, 33, 92 |
| abstract_inverted_index.by | 86, 129 |
| abstract_inverted_index.in | 45, 131, 137 |
| abstract_inverted_index.is | 30, 84, 97 |
| abstract_inverted_index.of | 10, 26, 36, 52, 55, 76, 113, 149 |
| abstract_inverted_index.on | 4, 104 |
| abstract_inverted_index.to | 32, 49, 90, 108 |
| abstract_inverted_index.The | 24, 81, 119 |
| abstract_inverted_index.and | 18, 47, 68, 73, 135, 155 |
| abstract_inverted_index.for | 12, 42, 66, 159 |
| abstract_inverted_index.the | 53, 70, 77, 87, 105, 110, 114, 123, 141, 147, 150, 161 |
| abstract_inverted_index.This | 38 |
| abstract_inverted_index.base | 93 |
| abstract_inverted_index.data | 29 |
| abstract_inverted_index.deep | 63, 143 |
| abstract_inverted_index.from | 21 |
| abstract_inverted_index.over | 140 |
| abstract_inverted_index.that | 122 |
| abstract_inverted_index.then | 98 |
| abstract_inverted_index.this | 59 |
| abstract_inverted_index.final | 71 |
| abstract_inverted_index.model | 115, 125, 152 |
| abstract_inverted_index.paper | 60 |
| abstract_inverted_index.range | 9, 54 |
| abstract_inverted_index.shows | 121 |
| abstract_inverted_index.using | 100 |
| abstract_inverted_index.water | 133 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.24.22% | 130 |
| abstract_inverted_index.79.72% | 136 |
| abstract_inverted_index.beyond | 116 |
| abstract_inverted_index.domain | 89, 112 |
| abstract_inverted_index.extend | 109 |
| abstract_inverted_index.issues | 41 |
| abstract_inverted_index.model. | 145 |
| abstract_inverted_index.narrow | 8 |
| abstract_inverted_index.purity | 72 |
| abstract_inverted_index.raises | 40 |
| abstract_inverted_index.relies | 3 |
| abstract_inverted_index.result | 120 |
| abstract_inverted_index.target | 106 |
| abstract_inverted_index.content | 134 |
| abstract_inverted_index.control | 2 |
| abstract_inverted_index.feature | 94 |
| abstract_inverted_index.learner | 107 |
| abstract_inverted_index.limited | 31 |
| abstract_inverted_index.margins | 11 |
| abstract_inverted_index.network | 83 |
| abstract_inverted_index.outside | 51 |
| abstract_inverted_index.process | 1, 16, 28, 43 |
| abstract_inverted_index.product | 156 |
| abstract_inverted_index.quality | 157 |
| abstract_inverted_index.tightly | 6 |
| abstract_inverted_index.trained | 85 |
| abstract_inverted_index.working | 111 |
| abstract_inverted_index.Chemical | 0 |
| abstract_inverted_index.capacity | 75 |
| abstract_inverted_index.critical | 13 |
| abstract_inverted_index.ensuring | 15 |
| abstract_inverted_index.few-shot | 101 |
| abstract_inverted_index.generate | 91 |
| abstract_inverted_index.glycerin | 78, 138, 162 |
| abstract_inverted_index.improved | 126 |
| abstract_inverted_index.learning | 65, 102, 144 |
| abstract_inverted_index.process. | 80, 164 |
| abstract_inverted_index.proposed | 82, 124, 151 |
| abstract_inverted_index.proposes | 61 |
| abstract_inverted_index.setpoint | 35 |
| abstract_inverted_index.specific | 34 |
| abstract_inverted_index.transfer | 64 |
| abstract_inverted_index.adjusting | 48 |
| abstract_inverted_index.challenge | 39 |
| abstract_inverted_index.enhancing | 160 |
| abstract_inverted_index.equipment | 20 |
| abstract_inverted_index.potential | 22 |
| abstract_inverted_index.practice. | 118 |
| abstract_inverted_index.stability | 17 |
| abstract_inverted_index.Therefore, | 58 |
| abstract_inverted_index.accidents. | 23 |
| abstract_inverted_index.deviations | 50 |
| abstract_inverted_index.extractor, | 95 |
| abstract_inverted_index.fine-tuned | 99 |
| abstract_inverted_index.historical | 27, 117 |
| abstract_inverted_index.identified | 153 |
| abstract_inverted_index.monitoring | 44 |
| abstract_inverted_index.operation. | 37 |
| abstract_inverted_index.optimizing | 69 |
| abstract_inverted_index.predicting | 46, 67, 132 |
| abstract_inverted_index.prediction | 127, 139 |
| abstract_inverted_index.production | 74, 154 |
| abstract_inverted_index.simulation | 88 |
| abstract_inverted_index.techniques | 103 |
| abstract_inverted_index.variables, | 14 |
| abstract_inverted_index.controlled, | 7 |
| abstract_inverted_index.operational | 56 |
| abstract_inverted_index.parameters. | 57 |
| abstract_inverted_index.performance | 128 |
| abstract_inverted_index.availability | 25 |
| abstract_inverted_index.conventional | 142 |
| abstract_inverted_index.improvements | 158 |
| abstract_inverted_index.purification | 79, 163 |
| abstract_inverted_index.safeguarding | 19 |
| abstract_inverted_index.Additionally, | 146 |
| abstract_inverted_index.implementation | 148 |
| abstract_inverted_index.simulation-assisted | 62 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.87568222 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |