Profiling Cell-state Fingerprints Based on Deep Learning Model with Meta-programs of Pan-cancer Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/gpbjnl/qzaf123
Cell states within cancer have garnered significant attention, yet the mechanisms through which malignant cells assert dominance in pan-cancer commonalities remain elusive. In this study, we employed label-free multiplexed single-cell RNA sequencing (scRNA-seq) to analyze cell states in 159,372 cells across 245 cell lines spanning 14 tissue types, integrating both public and proprietary datasets. We identified 21 meta-programs (MPs) representing shared characteristics across pan-cancer landscapes, encompassing 16 biological processes. Subsequently, we developed a deep learning model StateNet to generate cell-state fingerprints for delineating the individuality of each cell line based on these MPs. Leveraging StateNet, we pinpointed ACAT2 as a potential mediator bridging hypoxia and the lipid metabolism pathway, and we also showcased that epithelial–mesenchymal transition programs are vital for classifying cell lines through perturbation experiments. StateNet not only elucidates the overarching manifold structure of scRNA-seq data but also furnishes cell-state fingerprints of cell clusters, unveiling prognosis-related programs and distinguishing between patients with varying survival outcomes. Utilizing these prognosis-related programs on 3210 cancer samples, we constructed Cox models and identified risk-associated programs and genes responsible for different cancer types. StateNet thus emerges as a novel and efficient tool for cancer profiling, unraveling the shared commonalities and distinct individualities of pan-cancer cells across expansive datasets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/gpbjnl/qzaf123
- https://academic.oup.com/gpb/advance-article-pdf/doi/10.1093/gpbjnl/qzaf123/65672920/qzaf123.pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4416917663
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416917663Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/gpbjnl/qzaf123Digital Object Identifier
- Title
-
Profiling Cell-state Fingerprints Based on Deep Learning Model with Meta-programs of Pan-cancerWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-02Full publication date if available
- Authors
-
Zebin Wen, Siwen Xu, Jiahong Wang, Shuyi Cao, Xingguang Luο, Yan Chen, Patrick Wai-Hang KwongList of authors in order
- Landing page
-
https://doi.org/10.1093/gpbjnl/qzaf123Publisher landing page
- PDF URL
-
https://academic.oup.com/gpb/advance-article-pdf/doi/10.1093/gpbjnl/qzaf123/65672920/qzaf123.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/gpb/advance-article-pdf/doi/10.1093/gpbjnl/qzaf123/65672920/qzaf123.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416917663 |
|---|---|
| doi | https://doi.org/10.1093/gpbjnl/qzaf123 |
| ids.doi | https://doi.org/10.1093/gpbjnl/qzaf123 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41329499 |
| ids.openalex | https://openalex.org/W4416917663 |
| fwci | |
| type | article |
| title | Profiling Cell-state Fingerprints Based on Deep Learning Model with Meta-programs of Pan-cancer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 3500 |
| apc_list.currency | USD |
| apc_list.value_usd | 3500 |
| apc_paid.value | 3500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3500 |
| language | en |
| locations[0].id | doi:10.1093/gpbjnl/qzaf123 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S155547894 |
| locations[0].source.issn | 1672-0229, 2210-3244 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1672-0229 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Genomics Proteomics & Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/gpb/advance-article-pdf/doi/10.1093/gpbjnl/qzaf123/65672920/qzaf123.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Genomics, Proteomics & Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/gpbjnl/qzaf123 |
| locations[1].id | pmid:41329499 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Genomics, proteomics & bioinformatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41329499 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5014764028 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4513-0100 |
| authorships[0].author.display_name | Zebin Wen |
| authorships[0].countries | CN, HK, MO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210111784, https://openalex.org/I58200834 |
| authorships[0].affiliations[0].raw_affiliation_string | Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, , Guangzhou 510515, |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I111950717 |
| authorships[0].affiliations[1].raw_affiliation_string | Macau University of Science and Technology, Macau Special Administrative Region Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, 999078, |
| authorships[0].institutions[0].id | https://openalex.org/I58200834 |
| authorships[0].institutions[0].ror | https://ror.org/01vjw4z39 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I58200834 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Southern Medical University |
| authorships[0].institutions[1].id | https://openalex.org/I4210111784 |
| authorships[0].institutions[1].ror | https://ror.org/01txhcw25 |
| authorships[0].institutions[1].type | company |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210111784 |
| authorships[0].institutions[1].country_code | HK |
| authorships[0].institutions[1].display_name | Cell Technology (China) |
| authorships[0].institutions[2].id | https://openalex.org/I111950717 |
| authorships[0].institutions[2].ror | https://ror.org/03jqs2n27 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I111950717, https://openalex.org/I4391767947 |
| authorships[0].institutions[2].country_code | MO |
| authorships[0].institutions[2].display_name | Macau University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zebin Wen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Macau University of Science and Technology, Macau Special Administrative Region Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, 999078,, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, , Guangzhou 510515, |
| authorships[1].author.id | https://openalex.org/A5088621656 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7936-0639 |
| authorships[1].author.display_name | Siwen Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I190242452 |
| authorships[1].affiliations[0].raw_affiliation_string | Guangdong Pharmaceutical University College of Medical Information and Engineering, , Guangzhou 511400, |
| authorships[1].institutions[0].id | https://openalex.org/I190242452 |
| authorships[1].institutions[0].ror | https://ror.org/02vg7mz57 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I190242452 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guangdong Pharmaceutical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Siwen Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Guangdong Pharmaceutical University College of Medical Information and Engineering, , Guangzhou 511400, |
| authorships[2].author.id | https://openalex.org/A5100684688 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6796-1832 |
| authorships[2].author.display_name | Jiahong Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I58200834 |
| authorships[2].affiliations[0].raw_affiliation_string | Southern Medical University Cancer Research Institute, School of Basic Medical Sciences, , Guangzhou 510515, |
| authorships[2].institutions[0].id | https://openalex.org/I58200834 |
| authorships[2].institutions[0].ror | https://ror.org/01vjw4z39 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I58200834 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Southern Medical University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jiahong Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Southern Medical University Cancer Research Institute, School of Basic Medical Sciences, , Guangzhou 510515, |
| authorships[3].author.id | https://openalex.org/A5084306051 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-8670-8896 |
| authorships[3].author.display_name | Shuyi Cao |
| authorships[3].countries | CN, HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210111784, https://openalex.org/I58200834 |
| authorships[3].affiliations[0].raw_affiliation_string | Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, , Guangzhou 510515, |
| authorships[3].institutions[0].id | https://openalex.org/I58200834 |
| authorships[3].institutions[0].ror | https://ror.org/01vjw4z39 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I58200834 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Southern Medical University |
| authorships[3].institutions[1].id | https://openalex.org/I4210111784 |
| authorships[3].institutions[1].ror | https://ror.org/01txhcw25 |
| authorships[3].institutions[1].type | company |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210111784 |
| authorships[3].institutions[1].country_code | HK |
| authorships[3].institutions[1].display_name | Cell Technology (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shuyi Cao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, , Guangzhou 510515, |
| authorships[4].author.id | https://openalex.org/A5100653361 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3585-042X |
| authorships[4].author.display_name | Xingguang Luο |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[4].affiliations[0].raw_affiliation_string | Yale School of Medicine Department of Psychiatry, , New Haven, CT 06510, |
| authorships[4].institutions[0].id | https://openalex.org/I32971472 |
| authorships[4].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Yale University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xingguang Luo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Yale School of Medicine Department of Psychiatry, , New Haven, CT 06510, |
| authorships[5].author.id | https://openalex.org/A5100772602 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2354-230X |
| authorships[5].author.display_name | Yan Chen |
| authorships[5].countries | MO |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I111950717 |
| authorships[5].affiliations[0].raw_affiliation_string | Macau University of Science and Technology, Macau Special Administrative Region Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, 999078, |
| authorships[5].institutions[0].id | https://openalex.org/I111950717 |
| authorships[5].institutions[0].ror | https://ror.org/03jqs2n27 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I111950717, https://openalex.org/I4391767947 |
| authorships[5].institutions[0].country_code | MO |
| authorships[5].institutions[0].display_name | Macau University of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yan Chen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Macau University of Science and Technology, Macau Special Administrative Region Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, 999078, |
| authorships[6].author.id | https://openalex.org/A5018942319 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1834-5715 |
| authorships[6].author.display_name | Patrick Wai-Hang Kwong |
| authorships[6].countries | MO |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I111950717 |
| authorships[6].affiliations[0].raw_affiliation_string | Macau University of Science and Technology, Macau Special Administrative Region Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, 999078, |
| authorships[6].institutions[0].id | https://openalex.org/I111950717 |
| authorships[6].institutions[0].ror | https://ror.org/03jqs2n27 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I111950717, https://openalex.org/I4391767947 |
| authorships[6].institutions[0].country_code | MO |
| authorships[6].institutions[0].display_name | Macau University of Science and Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Paul K H Tam |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Macau University of Science and Technology, Macau Special Administrative Region Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, 999078, |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/gpb/advance-article-pdf/doi/10.1093/gpbjnl/qzaf123/65672920/qzaf123.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-02T00:00:00 |
| display_name | Profiling Cell-state Fingerprints Based on Deep Learning Model with Meta-programs of Pan-cancer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-03T23:09:05.601824 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1093/gpbjnl/qzaf123 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S155547894 |
| best_oa_location.source.issn | 1672-0229, 2210-3244 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1672-0229 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Genomics Proteomics & Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/gpb/advance-article-pdf/doi/10.1093/gpbjnl/qzaf123/65672920/qzaf123.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Genomics, Proteomics & Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/gpbjnl/qzaf123 |
| primary_location.id | doi:10.1093/gpbjnl/qzaf123 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S155547894 |
| primary_location.source.issn | 1672-0229, 2210-3244 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1672-0229 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Genomics Proteomics & Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/gpb/advance-article-pdf/doi/10.1093/gpbjnl/qzaf123/65672920/qzaf123.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Genomics, Proteomics & Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/gpbjnl/qzaf123 |
| publication_date | 2025-12-02 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 73, 100, 184 |
| abstract_inverted_index.14 | 46 |
| abstract_inverted_index.16 | 67 |
| abstract_inverted_index.21 | 57 |
| abstract_inverted_index.In | 23 |
| abstract_inverted_index.We | 55 |
| abstract_inverted_index.as | 99, 183 |
| abstract_inverted_index.in | 18, 38 |
| abstract_inverted_index.of | 86, 135, 143, 199 |
| abstract_inverted_index.on | 91, 161 |
| abstract_inverted_index.to | 34, 78 |
| abstract_inverted_index.we | 26, 71, 96, 111, 165 |
| abstract_inverted_index.245 | 42 |
| abstract_inverted_index.Cox | 167 |
| abstract_inverted_index.RNA | 31 |
| abstract_inverted_index.and | 52, 105, 110, 149, 169, 173, 186, 196 |
| abstract_inverted_index.are | 118 |
| abstract_inverted_index.but | 138 |
| abstract_inverted_index.for | 82, 120, 176, 189 |
| abstract_inverted_index.not | 128 |
| abstract_inverted_index.the | 10, 84, 106, 131, 193 |
| abstract_inverted_index.yet | 9 |
| abstract_inverted_index.3210 | 162 |
| abstract_inverted_index.Cell | 1 |
| abstract_inverted_index.MPs. | 93 |
| abstract_inverted_index.also | 112, 139 |
| abstract_inverted_index.both | 50 |
| abstract_inverted_index.cell | 36, 43, 88, 122, 144 |
| abstract_inverted_index.data | 137 |
| abstract_inverted_index.deep | 74 |
| abstract_inverted_index.each | 87 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.line | 89 |
| abstract_inverted_index.only | 129 |
| abstract_inverted_index.that | 114 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.thus | 181 |
| abstract_inverted_index.tool | 188 |
| abstract_inverted_index.with | 153 |
| abstract_inverted_index.(MPs) | 59 |
| abstract_inverted_index.ACAT2 | 98 |
| abstract_inverted_index.based | 90 |
| abstract_inverted_index.cells | 15, 40, 201 |
| abstract_inverted_index.genes | 174 |
| abstract_inverted_index.lines | 44, 123 |
| abstract_inverted_index.lipid | 107 |
| abstract_inverted_index.model | 76 |
| abstract_inverted_index.novel | 185 |
| abstract_inverted_index.these | 92, 158 |
| abstract_inverted_index.vital | 119 |
| abstract_inverted_index.which | 13 |
| abstract_inverted_index.across | 41, 63, 202 |
| abstract_inverted_index.assert | 16 |
| abstract_inverted_index.cancer | 4, 163, 178, 190 |
| abstract_inverted_index.models | 168 |
| abstract_inverted_index.public | 51 |
| abstract_inverted_index.remain | 21 |
| abstract_inverted_index.shared | 61, 194 |
| abstract_inverted_index.states | 2, 37 |
| abstract_inverted_index.study, | 25 |
| abstract_inverted_index.tissue | 47 |
| abstract_inverted_index.types, | 48 |
| abstract_inverted_index.types. | 179 |
| abstract_inverted_index.within | 3 |
| abstract_inverted_index.159,372 | 39 |
| abstract_inverted_index.analyze | 35 |
| abstract_inverted_index.between | 151 |
| abstract_inverted_index.emerges | 182 |
| abstract_inverted_index.hypoxia | 104 |
| abstract_inverted_index.through | 12, 124 |
| abstract_inverted_index.varying | 154 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.StateNet | 77, 127, 180 |
| abstract_inverted_index.bridging | 103 |
| abstract_inverted_index.distinct | 197 |
| abstract_inverted_index.elusive. | 22 |
| abstract_inverted_index.employed | 27 |
| abstract_inverted_index.garnered | 6 |
| abstract_inverted_index.generate | 79 |
| abstract_inverted_index.learning | 75 |
| abstract_inverted_index.manifold | 133 |
| abstract_inverted_index.mediator | 102 |
| abstract_inverted_index.pathway, | 109 |
| abstract_inverted_index.patients | 152 |
| abstract_inverted_index.programs | 117, 148, 160, 172 |
| abstract_inverted_index.samples, | 164 |
| abstract_inverted_index.spanning | 45 |
| abstract_inverted_index.survival | 155 |
| abstract_inverted_index.StateNet, | 95 |
| abstract_inverted_index.Utilizing | 157 |
| abstract_inverted_index.clusters, | 145 |
| abstract_inverted_index.datasets. | 54, 204 |
| abstract_inverted_index.developed | 72 |
| abstract_inverted_index.different | 177 |
| abstract_inverted_index.dominance | 17 |
| abstract_inverted_index.efficient | 187 |
| abstract_inverted_index.expansive | 203 |
| abstract_inverted_index.furnishes | 140 |
| abstract_inverted_index.malignant | 14 |
| abstract_inverted_index.outcomes. | 156 |
| abstract_inverted_index.potential | 101 |
| abstract_inverted_index.scRNA-seq | 136 |
| abstract_inverted_index.showcased | 113 |
| abstract_inverted_index.structure | 134 |
| abstract_inverted_index.unveiling | 146 |
| abstract_inverted_index.Leveraging | 94 |
| abstract_inverted_index.attention, | 8 |
| abstract_inverted_index.biological | 68 |
| abstract_inverted_index.cell-state | 80, 141 |
| abstract_inverted_index.elucidates | 130 |
| abstract_inverted_index.identified | 56, 170 |
| abstract_inverted_index.label-free | 28 |
| abstract_inverted_index.mechanisms | 11 |
| abstract_inverted_index.metabolism | 108 |
| abstract_inverted_index.pan-cancer | 19, 64, 200 |
| abstract_inverted_index.pinpointed | 97 |
| abstract_inverted_index.processes. | 69 |
| abstract_inverted_index.profiling, | 191 |
| abstract_inverted_index.sequencing | 32 |
| abstract_inverted_index.transition | 116 |
| abstract_inverted_index.unraveling | 192 |
| abstract_inverted_index.(scRNA-seq) | 33 |
| abstract_inverted_index.classifying | 121 |
| abstract_inverted_index.constructed | 166 |
| abstract_inverted_index.delineating | 83 |
| abstract_inverted_index.integrating | 49 |
| abstract_inverted_index.landscapes, | 65 |
| abstract_inverted_index.multiplexed | 29 |
| abstract_inverted_index.overarching | 132 |
| abstract_inverted_index.proprietary | 53 |
| abstract_inverted_index.responsible | 175 |
| abstract_inverted_index.significant | 7 |
| abstract_inverted_index.single-cell | 30 |
| abstract_inverted_index.encompassing | 66 |
| abstract_inverted_index.experiments. | 126 |
| abstract_inverted_index.fingerprints | 81, 142 |
| abstract_inverted_index.perturbation | 125 |
| abstract_inverted_index.representing | 60 |
| abstract_inverted_index.Subsequently, | 70 |
| abstract_inverted_index.commonalities | 20, 195 |
| abstract_inverted_index.individuality | 85 |
| abstract_inverted_index.meta-programs | 58 |
| abstract_inverted_index.distinguishing | 150 |
| abstract_inverted_index.characteristics | 62 |
| abstract_inverted_index.individualities | 198 |
| abstract_inverted_index.risk-associated | 171 |
| abstract_inverted_index.prognosis-related | 147, 159 |
| abstract_inverted_index.epithelial–mesenchymal | 115 |
| cited_by_percentile_year | |
| countries_distinct_count | 4 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |