Progressive Classifier and Feature Extractor Adaptation for Unsupervised Domain Adaptation on Point Clouds Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.16474
Unsupervised domain adaptation (UDA) is a critical challenge in the field of point cloud analysis. Previous works tackle the problem either by feature extractor adaptation to enable a shared classifier to distinguish domain-invariant features, or by classifier adaptation to evolve the classifier to recognize target-styled source features to increase its adaptation ability. However, by learning domain-invariant features, feature extractor adaptation methods fail to encode semantically meaningful target-specific information, while classifier adaptation methods rely heavily on the accurate estimation of the target distribution. In this work, we propose a novel framework that deeply couples the classifier and feature extractor adaption for 3D UDA, dubbed Progressive Classifier and Feature Extractor Adaptation (PCFEA). Our PCFEA conducts 3D UDA from two distinct perspectives: macro and micro levels. On the macro level, we propose a progressive target-styled feature augmentation (PTFA) that establishes a series of intermediate domains to enable the model to progressively adapt to the target domain. Throughout this process, the source classifier is evolved to recognize target-styled source features (\ie, classifier adaptation). On the micro level, we develop an intermediate domain feature extractor adaptation (IDFA) that performs a compact feature alignment to encourage the target-styled feature extraction gradually. In this way, PTFA and IDFA can mutually benefit each other: IDFA contributes to the distribution estimation of PTFA while PTFA constructs smoother intermediate domains to encourage an accurate feature alignment of IDFA. We validate our method on popular benchmark datasets, where our method achieves new state-of-the-art performance. Our code is available at https://github.com/xiaoyao3302/PCFEA.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.16474
- https://arxiv.org/pdf/2311.16474
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389156658
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389156658Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.16474Digital Object Identifier
- Title
-
Progressive Classifier and Feature Extractor Adaptation for Unsupervised Domain Adaptation on Point CloudsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-27Full publication date if available
- Authors
-
Zicheng Wang, Zhen Zhao, Yiming Wu, Luping Zhou, Dong XuList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.16474Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.16474Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.16474Direct OA link when available
- Concepts
-
Computer science, Classifier (UML), Discriminative model, Artificial intelligence, Domain adaptation, Feature extraction, Machine learning, Extractor, Benchmark (surveying), Pattern recognition (psychology), Feature learning, Feature (linguistics), Engineering, Geography, Linguistics, Geodesy, Philosophy, Process engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389156658 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.16474 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.16474 |
| ids.openalex | https://openalex.org/W4389156658 |
| fwci | |
| type | preprint |
| title | Progressive Classifier and Feature Extractor Adaptation for Unsupervised Domain Adaptation on Point Clouds |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10638 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9092000126838684 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Optical measurement and interference techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8063316345214844 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C95623464 |
| concepts[1].level | 2 |
| concepts[1].score | 0.735869288444519 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[1].display_name | Classifier (UML) |
| concepts[2].id | https://openalex.org/C97931131 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6688743233680725 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[2].display_name | Discriminative model |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6592671871185303 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2776434776 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5226423740386963 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q19246213 |
| concepts[4].display_name | Domain adaptation |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5174232721328735 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4768727421760559 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C117978034 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4553263187408447 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5422192 |
| concepts[7].display_name | Extractor |
| concepts[8].id | https://openalex.org/C185798385 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4404558539390564 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[8].display_name | Benchmark (surveying) |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4250672459602356 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C59404180 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4170331358909607 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[10].display_name | Feature learning |
| concepts[11].id | https://openalex.org/C2776401178 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41274648904800415 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[11].display_name | Feature (linguistics) |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.06851282715797424 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C13280743 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[15].display_name | Geodesy |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C21880701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2144042 |
| concepts[17].display_name | Process engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8063316345214844 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/classifier |
| keywords[1].score | 0.735869288444519 |
| keywords[1].display_name | Classifier (UML) |
| keywords[2].id | https://openalex.org/keywords/discriminative-model |
| keywords[2].score | 0.6688743233680725 |
| keywords[2].display_name | Discriminative model |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6592671871185303 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/domain-adaptation |
| keywords[4].score | 0.5226423740386963 |
| keywords[4].display_name | Domain adaptation |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.5174232721328735 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4768727421760559 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/extractor |
| keywords[7].score | 0.4553263187408447 |
| keywords[7].display_name | Extractor |
| keywords[8].id | https://openalex.org/keywords/benchmark |
| keywords[8].score | 0.4404558539390564 |
| keywords[8].display_name | Benchmark (surveying) |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4250672459602356 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/feature-learning |
| keywords[10].score | 0.4170331358909607 |
| keywords[10].display_name | Feature learning |
| keywords[11].id | https://openalex.org/keywords/feature |
| keywords[11].score | 0.41274648904800415 |
| keywords[11].display_name | Feature (linguistics) |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.06851282715797424 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.16474 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.16474 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.16474 |
| locations[1].id | doi:10.48550/arxiv.2311.16474 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.16474 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114500326 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4286-5120 |
| authorships[0].author.display_name | Zicheng Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Zicheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072694516 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0796-4078 |
| authorships[1].author.display_name | Zhen Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao, Zhen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114104074 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-5334-4761 |
| authorships[2].author.display_name | Yiming Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wu, Yiming |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100643784 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8762-2424 |
| authorships[3].author.display_name | Luping Zhou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Luping |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100341937 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9451-1754 |
| authorships[4].author.display_name | Dong Xu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xu, Dong |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.16474 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-11-30T00:00:00 |
| display_name | Progressive Classifier and Feature Extractor Adaptation for Unsupervised Domain Adaptation on Point Clouds |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10638 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9092000126838684 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Optical measurement and interference techniques |
| related_works | https://openalex.org/W1487808658, https://openalex.org/W3080655457, https://openalex.org/W2145868540, https://openalex.org/W4312246223, https://openalex.org/W3166286441, https://openalex.org/W3214142563, https://openalex.org/W2945706271, https://openalex.org/W4387435415, https://openalex.org/W3136267388, https://openalex.org/W3186065094 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.16474 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.16474 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.16474 |
| primary_location.id | pmh:oai:arXiv.org:2311.16474 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.16474 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.16474 |
| publication_date | 2023-11-27 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 27, 87, 129, 137, 184 |
| abstract_inverted_index.3D | 100, 113 |
| abstract_inverted_index.In | 82, 195 |
| abstract_inverted_index.On | 123, 169 |
| abstract_inverted_index.We | 228 |
| abstract_inverted_index.an | 175, 222 |
| abstract_inverted_index.at | 247 |
| abstract_inverted_index.by | 21, 35, 53 |
| abstract_inverted_index.in | 8 |
| abstract_inverted_index.is | 4, 159, 245 |
| abstract_inverted_index.of | 11, 78, 139, 212, 226 |
| abstract_inverted_index.on | 74, 232 |
| abstract_inverted_index.or | 34 |
| abstract_inverted_index.to | 25, 30, 38, 42, 47, 62, 142, 146, 149, 161, 188, 208, 220 |
| abstract_inverted_index.we | 85, 127, 173 |
| abstract_inverted_index.Our | 110, 243 |
| abstract_inverted_index.UDA | 114 |
| abstract_inverted_index.and | 95, 105, 120, 199 |
| abstract_inverted_index.can | 201 |
| abstract_inverted_index.for | 99 |
| abstract_inverted_index.its | 49 |
| abstract_inverted_index.new | 240 |
| abstract_inverted_index.our | 230, 237 |
| abstract_inverted_index.the | 9, 18, 40, 75, 79, 93, 124, 144, 150, 156, 170, 190, 209 |
| abstract_inverted_index.two | 116 |
| abstract_inverted_index.IDFA | 200, 206 |
| abstract_inverted_index.PTFA | 198, 213, 215 |
| abstract_inverted_index.UDA, | 101 |
| abstract_inverted_index.code | 244 |
| abstract_inverted_index.each | 204 |
| abstract_inverted_index.fail | 61 |
| abstract_inverted_index.from | 115 |
| abstract_inverted_index.rely | 72 |
| abstract_inverted_index.that | 90, 135, 182 |
| abstract_inverted_index.this | 83, 154, 196 |
| abstract_inverted_index.way, | 197 |
| abstract_inverted_index.(UDA) | 3 |
| abstract_inverted_index.(\ie, | 166 |
| abstract_inverted_index.IDFA. | 227 |
| abstract_inverted_index.PCFEA | 111 |
| abstract_inverted_index.adapt | 148 |
| abstract_inverted_index.cloud | 13 |
| abstract_inverted_index.field | 10 |
| abstract_inverted_index.macro | 119, 125 |
| abstract_inverted_index.micro | 121, 171 |
| abstract_inverted_index.model | 145 |
| abstract_inverted_index.novel | 88 |
| abstract_inverted_index.point | 12 |
| abstract_inverted_index.where | 236 |
| abstract_inverted_index.while | 68, 214 |
| abstract_inverted_index.work, | 84 |
| abstract_inverted_index.works | 16 |
| abstract_inverted_index.(IDFA) | 181 |
| abstract_inverted_index.(PTFA) | 134 |
| abstract_inverted_index.deeply | 91 |
| abstract_inverted_index.domain | 1, 177 |
| abstract_inverted_index.dubbed | 102 |
| abstract_inverted_index.either | 20 |
| abstract_inverted_index.enable | 26, 143 |
| abstract_inverted_index.encode | 63 |
| abstract_inverted_index.evolve | 39 |
| abstract_inverted_index.level, | 126, 172 |
| abstract_inverted_index.method | 231, 238 |
| abstract_inverted_index.other: | 205 |
| abstract_inverted_index.series | 138 |
| abstract_inverted_index.shared | 28 |
| abstract_inverted_index.source | 45, 157, 164 |
| abstract_inverted_index.tackle | 17 |
| abstract_inverted_index.target | 80, 151 |
| abstract_inverted_index.Feature | 106 |
| abstract_inverted_index.benefit | 203 |
| abstract_inverted_index.compact | 185 |
| abstract_inverted_index.couples | 92 |
| abstract_inverted_index.develop | 174 |
| abstract_inverted_index.domain. | 152 |
| abstract_inverted_index.domains | 141, 219 |
| abstract_inverted_index.evolved | 160 |
| abstract_inverted_index.feature | 22, 57, 96, 132, 178, 186, 192, 224 |
| abstract_inverted_index.heavily | 73 |
| abstract_inverted_index.levels. | 122 |
| abstract_inverted_index.methods | 60, 71 |
| abstract_inverted_index.popular | 233 |
| abstract_inverted_index.problem | 19 |
| abstract_inverted_index.propose | 86, 128 |
| abstract_inverted_index.(PCFEA). | 109 |
| abstract_inverted_index.However, | 52 |
| abstract_inverted_index.Previous | 15 |
| abstract_inverted_index.ability. | 51 |
| abstract_inverted_index.accurate | 76, 223 |
| abstract_inverted_index.achieves | 239 |
| abstract_inverted_index.adaption | 98 |
| abstract_inverted_index.conducts | 112 |
| abstract_inverted_index.critical | 6 |
| abstract_inverted_index.distinct | 117 |
| abstract_inverted_index.features | 46, 165 |
| abstract_inverted_index.increase | 48 |
| abstract_inverted_index.learning | 54 |
| abstract_inverted_index.mutually | 202 |
| abstract_inverted_index.performs | 183 |
| abstract_inverted_index.process, | 155 |
| abstract_inverted_index.smoother | 217 |
| abstract_inverted_index.validate | 229 |
| abstract_inverted_index.Extractor | 107 |
| abstract_inverted_index.alignment | 187, 225 |
| abstract_inverted_index.analysis. | 14 |
| abstract_inverted_index.available | 246 |
| abstract_inverted_index.benchmark | 234 |
| abstract_inverted_index.challenge | 7 |
| abstract_inverted_index.datasets, | 235 |
| abstract_inverted_index.encourage | 189, 221 |
| abstract_inverted_index.extractor | 23, 58, 97, 179 |
| abstract_inverted_index.features, | 33, 56 |
| abstract_inverted_index.framework | 89 |
| abstract_inverted_index.recognize | 43, 162 |
| abstract_inverted_index.Adaptation | 108 |
| abstract_inverted_index.Classifier | 104 |
| abstract_inverted_index.Throughout | 153 |
| abstract_inverted_index.adaptation | 2, 24, 37, 50, 59, 70, 180 |
| abstract_inverted_index.classifier | 29, 36, 41, 69, 94, 158, 167 |
| abstract_inverted_index.constructs | 216 |
| abstract_inverted_index.estimation | 77, 211 |
| abstract_inverted_index.extraction | 193 |
| abstract_inverted_index.gradually. | 194 |
| abstract_inverted_index.meaningful | 65 |
| abstract_inverted_index.Progressive | 103 |
| abstract_inverted_index.contributes | 207 |
| abstract_inverted_index.distinguish | 31 |
| abstract_inverted_index.establishes | 136 |
| abstract_inverted_index.progressive | 130 |
| abstract_inverted_index.Unsupervised | 0 |
| abstract_inverted_index.adaptation). | 168 |
| abstract_inverted_index.augmentation | 133 |
| abstract_inverted_index.distribution | 210 |
| abstract_inverted_index.information, | 67 |
| abstract_inverted_index.intermediate | 140, 176, 218 |
| abstract_inverted_index.performance. | 242 |
| abstract_inverted_index.semantically | 64 |
| abstract_inverted_index.distribution. | 81 |
| abstract_inverted_index.perspectives: | 118 |
| abstract_inverted_index.progressively | 147 |
| abstract_inverted_index.target-styled | 44, 131, 163, 191 |
| abstract_inverted_index.target-specific | 66 |
| abstract_inverted_index.domain-invariant | 32, 55 |
| abstract_inverted_index.state-of-the-art | 241 |
| abstract_inverted_index.https://github.com/xiaoyao3302/PCFEA. | 248 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |