Progressive Energy-Based Cooperative Learning for Multi-Domain Image-to-Image Translation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.14448
This paper studies a novel energy-based cooperative learning framework for multi-domain image-to-image translation. The framework consists of four components: descriptor, translator, style encoder, and style generator. The descriptor is a multi-head energy-based model that represents a multi-domain image distribution. The components of translator, style encoder, and style generator constitute a diversified image generator. Specifically, given an input image from a source domain, the translator turns it into a stylised output image of the target domain according to a style code, which can be inferred by the style encoder from a reference image or produced by the style generator from a random noise. Since the style generator is represented as an domain-specific distribution of style codes, the translator can provide a one-to-many transformation (i.e., diversified generation) between source domain and target domain. To train our framework, we propose a likelihood-based multi-domain cooperative learning algorithm to jointly train the multi-domain descriptor and the diversified image generator (including translator, style encoder, and style generator modules) via multi-domain MCMC teaching, in which the descriptor guides the diversified image generator to shift its probability density toward the data distribution, while the diversified image generator uses its randomly translated images to initialize the descriptor's Langevin dynamics process for efficient sampling.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.14448
- https://arxiv.org/pdf/2306.14448
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382322935
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382322935Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.14448Digital Object Identifier
- Title
-
Progressive Energy-Based Cooperative Learning for Multi-Domain Image-to-Image TranslationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-26Full publication date if available
- Authors
-
Weinan Song, Yaxuan Zhu, Lei He, Yingnian Wu, Jianwen XieList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.14448Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.14448Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.14448Direct OA link when available
- Concepts
-
Generator (circuit theory), Computer science, Image (mathematics), Domain (mathematical analysis), Encoder, Artificial intelligence, Translation (biology), Image translation, Computer vision, Algorithm, Pattern recognition (psychology), Mathematics, Power (physics), Quantum mechanics, Biochemistry, Gene, Chemistry, Operating system, Messenger RNA, Mathematical analysis, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382322935 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.14448 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.14448 |
| ids.openalex | https://openalex.org/W4382322935 |
| fwci | |
| type | preprint |
| title | Progressive Energy-Based Cooperative Learning for Multi-Domain Image-to-Image Translation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9954000115394592 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T12859 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9954000115394592 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1304 |
| topics[2].subfield.display_name | Biophysics |
| topics[2].display_name | Cell Image Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780992000 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7950141429901123 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17016113 |
| concepts[0].display_name | Generator (circuit theory) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.721817135810852 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C115961682 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6338363885879517 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[2].display_name | Image (mathematics) |
| concepts[3].id | https://openalex.org/C36503486 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6055077314376831 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[3].display_name | Domain (mathematical analysis) |
| concepts[4].id | https://openalex.org/C118505674 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5964499115943909 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[4].display_name | Encoder |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5598611831665039 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C149364088 |
| concepts[6].level | 4 |
| concepts[6].score | 0.5344198346138 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q185917 |
| concepts[6].display_name | Translation (biology) |
| concepts[7].id | https://openalex.org/C2779757391 |
| concepts[7].level | 3 |
| concepts[7].score | 0.49525776505470276 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6002292 |
| concepts[7].display_name | Image translation |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.45384329557418823 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32526829838752747 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3220021426677704 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1300182044506073 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C163258240 |
| concepts[12].level | 2 |
| concepts[12].score | 0.11567932367324829 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[12].display_name | Power (physics) |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C105580179 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q188928 |
| concepts[18].display_name | Messenger RNA |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/generator |
| keywords[0].score | 0.7950141429901123 |
| keywords[0].display_name | Generator (circuit theory) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.721817135810852 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/image |
| keywords[2].score | 0.6338363885879517 |
| keywords[2].display_name | Image (mathematics) |
| keywords[3].id | https://openalex.org/keywords/domain |
| keywords[3].score | 0.6055077314376831 |
| keywords[3].display_name | Domain (mathematical analysis) |
| keywords[4].id | https://openalex.org/keywords/encoder |
| keywords[4].score | 0.5964499115943909 |
| keywords[4].display_name | Encoder |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5598611831665039 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/translation |
| keywords[6].score | 0.5344198346138 |
| keywords[6].display_name | Translation (biology) |
| keywords[7].id | https://openalex.org/keywords/image-translation |
| keywords[7].score | 0.49525776505470276 |
| keywords[7].display_name | Image translation |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.45384329557418823 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.32526829838752747 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3220021426677704 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.1300182044506073 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/power |
| keywords[12].score | 0.11567932367324829 |
| keywords[12].display_name | Power (physics) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.14448 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.14448 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.14448 |
| locations[1].id | doi:10.48550/arxiv.2306.14448 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.14448 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5019008241 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7464-1551 |
| authorships[0].author.display_name | Weinan Song |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Song, Weinan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5000872265 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yaxuan Zhu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhu, Yaxuan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114859990 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-7753-4700 |
| authorships[2].author.display_name | Lei He |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | He, Lei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102928508 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5252-7574 |
| authorships[3].author.display_name | Yingnian Wu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wu, Yingnian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102966958 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6818-7444 |
| authorships[4].author.display_name | Jianwen Xie |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xie, Jianwen |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.14448 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-06-28T00:00:00 |
| display_name | Progressive Energy-Based Cooperative Learning for Multi-Domain Image-to-Image Translation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W4288069866, https://openalex.org/W4389232935, https://openalex.org/W3155045749, https://openalex.org/W2904616728, https://openalex.org/W3119479239, https://openalex.org/W2990774877, https://openalex.org/W4287064674, https://openalex.org/W3188573563, https://openalex.org/W3201246199, https://openalex.org/W2936127876 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.14448 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.14448 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.14448 |
| primary_location.id | pmh:oai:arXiv.org:2306.14448 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.14448 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.14448 |
| publication_date | 2023-06-26 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 29, 35, 49, 59, 67, 77, 89, 99, 119, 137 |
| abstract_inverted_index.To | 131 |
| abstract_inverted_index.an | 55, 109 |
| abstract_inverted_index.as | 108 |
| abstract_inverted_index.be | 82 |
| abstract_inverted_index.by | 84, 94 |
| abstract_inverted_index.in | 166 |
| abstract_inverted_index.is | 28, 106 |
| abstract_inverted_index.it | 65 |
| abstract_inverted_index.of | 16, 41, 71, 112 |
| abstract_inverted_index.or | 92 |
| abstract_inverted_index.to | 76, 143, 175, 194 |
| abstract_inverted_index.we | 135 |
| abstract_inverted_index.The | 13, 26, 39 |
| abstract_inverted_index.and | 23, 45, 128, 149, 158 |
| abstract_inverted_index.can | 81, 117 |
| abstract_inverted_index.for | 9, 201 |
| abstract_inverted_index.its | 177, 190 |
| abstract_inverted_index.our | 133 |
| abstract_inverted_index.the | 62, 72, 85, 95, 103, 115, 146, 150, 168, 171, 181, 185, 196 |
| abstract_inverted_index.via | 162 |
| abstract_inverted_index.MCMC | 164 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 182 |
| abstract_inverted_index.four | 17 |
| abstract_inverted_index.from | 58, 88, 98 |
| abstract_inverted_index.into | 66 |
| abstract_inverted_index.that | 33 |
| abstract_inverted_index.uses | 189 |
| abstract_inverted_index.Since | 102 |
| abstract_inverted_index.code, | 79 |
| abstract_inverted_index.given | 54 |
| abstract_inverted_index.image | 37, 51, 57, 70, 91, 152, 173, 187 |
| abstract_inverted_index.input | 56 |
| abstract_inverted_index.model | 32 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.shift | 176 |
| abstract_inverted_index.style | 21, 24, 43, 46, 78, 86, 96, 104, 113, 156, 159 |
| abstract_inverted_index.train | 132, 145 |
| abstract_inverted_index.turns | 64 |
| abstract_inverted_index.which | 80, 167 |
| abstract_inverted_index.while | 184 |
| abstract_inverted_index.(i.e., | 122 |
| abstract_inverted_index.codes, | 114 |
| abstract_inverted_index.domain | 74, 127 |
| abstract_inverted_index.guides | 170 |
| abstract_inverted_index.images | 193 |
| abstract_inverted_index.noise. | 101 |
| abstract_inverted_index.output | 69 |
| abstract_inverted_index.random | 100 |
| abstract_inverted_index.source | 60, 126 |
| abstract_inverted_index.target | 73, 129 |
| abstract_inverted_index.toward | 180 |
| abstract_inverted_index.between | 125 |
| abstract_inverted_index.density | 179 |
| abstract_inverted_index.domain, | 61 |
| abstract_inverted_index.domain. | 130 |
| abstract_inverted_index.encoder | 87 |
| abstract_inverted_index.jointly | 144 |
| abstract_inverted_index.process | 200 |
| abstract_inverted_index.propose | 136 |
| abstract_inverted_index.provide | 118 |
| abstract_inverted_index.studies | 2 |
| abstract_inverted_index.Langevin | 198 |
| abstract_inverted_index.consists | 15 |
| abstract_inverted_index.dynamics | 199 |
| abstract_inverted_index.encoder, | 22, 44, 157 |
| abstract_inverted_index.inferred | 83 |
| abstract_inverted_index.learning | 7, 141 |
| abstract_inverted_index.modules) | 161 |
| abstract_inverted_index.produced | 93 |
| abstract_inverted_index.randomly | 191 |
| abstract_inverted_index.stylised | 68 |
| abstract_inverted_index.according | 75 |
| abstract_inverted_index.algorithm | 142 |
| abstract_inverted_index.efficient | 202 |
| abstract_inverted_index.framework | 8, 14 |
| abstract_inverted_index.generator | 47, 97, 105, 153, 160, 174, 188 |
| abstract_inverted_index.reference | 90 |
| abstract_inverted_index.sampling. | 203 |
| abstract_inverted_index.teaching, | 165 |
| abstract_inverted_index.(including | 154 |
| abstract_inverted_index.components | 40 |
| abstract_inverted_index.constitute | 48 |
| abstract_inverted_index.descriptor | 27, 148, 169 |
| abstract_inverted_index.framework, | 134 |
| abstract_inverted_index.generator. | 25, 52 |
| abstract_inverted_index.initialize | 195 |
| abstract_inverted_index.multi-head | 30 |
| abstract_inverted_index.represents | 34 |
| abstract_inverted_index.translated | 192 |
| abstract_inverted_index.translator | 63, 116 |
| abstract_inverted_index.components: | 18 |
| abstract_inverted_index.cooperative | 6, 140 |
| abstract_inverted_index.descriptor, | 19 |
| abstract_inverted_index.diversified | 50, 123, 151, 172, 186 |
| abstract_inverted_index.generation) | 124 |
| abstract_inverted_index.one-to-many | 120 |
| abstract_inverted_index.probability | 178 |
| abstract_inverted_index.represented | 107 |
| abstract_inverted_index.translator, | 20, 42, 155 |
| abstract_inverted_index.descriptor's | 197 |
| abstract_inverted_index.distribution | 111 |
| abstract_inverted_index.energy-based | 5, 31 |
| abstract_inverted_index.multi-domain | 10, 36, 139, 147, 163 |
| abstract_inverted_index.translation. | 12 |
| abstract_inverted_index.Specifically, | 53 |
| abstract_inverted_index.distribution, | 183 |
| abstract_inverted_index.distribution. | 38 |
| abstract_inverted_index.image-to-image | 11 |
| abstract_inverted_index.transformation | 121 |
| abstract_inverted_index.domain-specific | 110 |
| abstract_inverted_index.likelihood-based | 138 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |