Projectively flat klt varieties Article Swipe
Related Concepts
Mathematics
Pure mathematics
Locus (genetics)
Quotient
Sheaf
Trigonometric functions
Gravitational singularity
Torus
Context (archaeology)
Mathematical analysis
Geometry
Biology
Chemistry
Paleontology
Gene
Biochemistry
Daniel Greb
,
Stefan Kebekus
,
Thomas Peternell
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.5802/jep.164
· OA: W3093076111
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.5802/jep.164
· OA: W3093076111
In the context of uniformisation problems, we study projective varieties with klt singularities whose cotangent sheaf admits a projectively flat structure over the smooth locus. Generalising work of Jahnke-Radloff, we show that torus quotients are the only klt varieties with semistable cotangent sheaf and extremal Chern classes. An analogous result for varieties with nef normalised cotangent sheaves follows.
Related Topics
Finding more related topics…