PromptARA: Improving Deep Representation in Hybrid Automatic Readability Assessment with Prompt and Orthogonal Projection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2023.findings-emnlp.1025
Readability assessment aims to automatically classify texts based on readers’ reading levels. The hybrid automatic readability assessment (ARA) models using both deep and linguistic features have attracted rising attention in recent years due to their impressive performance. However, deep features are not fully explored due to the scarcity of training data, and the fusion of deep and linguistic features is not very effective in existing hybrid ARA models. In this paper, we propose a novel hybrid ARA model called PromptARA through employing prompts to improve deep feature representations and an orthogonal projection layer to fuse both deep and linguistic features. A series of experiments are conducted over four English and two Chinese corpora to show the effectiveness of the proposed model. Experimental results demonstrate that the proposed model is superior to state-of-the-art models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2023.findings-emnlp.1025
- https://aclanthology.org/2023.findings-emnlp.1025.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389523724
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389523724Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2023.findings-emnlp.1025Digital Object Identifier
- Title
-
PromptARA: Improving Deep Representation in Hybrid Automatic Readability Assessment with Prompt and Orthogonal ProjectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Jinshan Zeng, Xianglong Yu, Xianchao Tong, Wenyan XiaoList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2023.findings-emnlp.1025Publisher landing page
- PDF URL
-
https://aclanthology.org/2023.findings-emnlp.1025.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2023.findings-emnlp.1025.pdfDirect OA link when available
- Concepts
-
Readability, Computer science, Deep learning, Artificial intelligence, Fuse (electrical), Representation (politics), Natural language processing, Feature (linguistics), Projection (relational algebra), Reading (process), Orthographic projection, Linguistics, Algorithm, Engineering, Philosophy, Law, Politics, Programming language, Electrical engineering, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389523724 |
|---|---|
| doi | https://doi.org/10.18653/v1/2023.findings-emnlp.1025 |
| ids.doi | https://doi.org/10.18653/v1/2023.findings-emnlp.1025 |
| ids.openalex | https://openalex.org/W4389523724 |
| fwci | 0.25544289 |
| type | article |
| title | PromptARA: Improving Deep Representation in Hybrid Automatic Readability Assessment with Prompt and Orthogonal Projection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 15371 |
| biblio.first_page | 15360 |
| topics[0].id | https://openalex.org/T13629 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Text Readability and Simplification |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9800000190734863 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778143727 |
| concepts[0].level | 2 |
| concepts[0].score | 0.902185320854187 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1820650 |
| concepts[0].display_name | Readability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7741784453392029 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7161668539047241 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.7055114507675171 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C141353440 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6730080246925354 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q182221 |
| concepts[4].display_name | Fuse (electrical) |
| concepts[5].id | https://openalex.org/C2776359362 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5894744992256165 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[5].display_name | Representation (politics) |
| concepts[6].id | https://openalex.org/C204321447 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5848351120948792 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[6].display_name | Natural language processing |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5775912404060364 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C57493831 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5313735008239746 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[8].display_name | Projection (relational algebra) |
| concepts[9].id | https://openalex.org/C554936623 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4982891082763672 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q199657 |
| concepts[9].display_name | Reading (process) |
| concepts[10].id | https://openalex.org/C175694140 |
| concepts[10].level | 2 |
| concepts[10].score | 0.49565255641937256 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q980329 |
| concepts[10].display_name | Orthographic projection |
| concepts[11].id | https://openalex.org/C41895202 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1941237449645996 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[11].display_name | Linguistics |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.09838983416557312 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.07232546806335449 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C199539241 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[15].display_name | Law |
| concepts[16].id | https://openalex.org/C94625758 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[16].display_name | Politics |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| concepts[18].id | https://openalex.org/C119599485 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[18].display_name | Electrical engineering |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/readability |
| keywords[0].score | 0.902185320854187 |
| keywords[0].display_name | Readability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7741784453392029 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.7161668539047241 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.7055114507675171 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/fuse |
| keywords[4].score | 0.6730080246925354 |
| keywords[4].display_name | Fuse (electrical) |
| keywords[5].id | https://openalex.org/keywords/representation |
| keywords[5].score | 0.5894744992256165 |
| keywords[5].display_name | Representation (politics) |
| keywords[6].id | https://openalex.org/keywords/natural-language-processing |
| keywords[6].score | 0.5848351120948792 |
| keywords[6].display_name | Natural language processing |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.5775912404060364 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/projection |
| keywords[8].score | 0.5313735008239746 |
| keywords[8].display_name | Projection (relational algebra) |
| keywords[9].id | https://openalex.org/keywords/reading |
| keywords[9].score | 0.4982891082763672 |
| keywords[9].display_name | Reading (process) |
| keywords[10].id | https://openalex.org/keywords/orthographic-projection |
| keywords[10].score | 0.49565255641937256 |
| keywords[10].display_name | Orthographic projection |
| keywords[11].id | https://openalex.org/keywords/linguistics |
| keywords[11].score | 0.1941237449645996 |
| keywords[11].display_name | Linguistics |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.09838983416557312 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.07232546806335449 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.18653/v1/2023.findings-emnlp.1025 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2023.findings-emnlp.1025.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Findings of the Association for Computational Linguistics: EMNLP 2023 |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2023.findings-emnlp.1025 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100440528 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1719-3358 |
| authorships[0].author.display_name | Jinshan Zeng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I53592917 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer and Information Science, Jiangxi Normal University |
| authorships[0].institutions[0].id | https://openalex.org/I53592917 |
| authorships[0].institutions[0].ror | https://ror.org/05nkgk822 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I53592917 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jiangxi Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jinshan Zeng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer and Information Science, Jiangxi Normal University |
| authorships[1].author.id | https://openalex.org/A5065778855 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7836-6799 |
| authorships[1].author.display_name | Xianglong Yu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I53592917 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Digital Industry, Jiangxi Normal University |
| authorships[1].institutions[0].id | https://openalex.org/I53592917 |
| authorships[1].institutions[0].ror | https://ror.org/05nkgk822 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I53592917 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jiangxi Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xianglong Yu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Digital Industry, Jiangxi Normal University |
| authorships[2].author.id | https://openalex.org/A5101277558 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xianchao Tong |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I53592917 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Digital Industry, Jiangxi Normal University |
| authorships[2].institutions[0].id | https://openalex.org/I53592917 |
| authorships[2].institutions[0].ror | https://ror.org/05nkgk822 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I53592917 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Jiangxi Normal University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xianchao Tong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Digital Industry, Jiangxi Normal University |
| authorships[3].author.id | https://openalex.org/A5010408457 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6253-2414 |
| authorships[3].author.display_name | Wenyan Xiao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4510145 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Foreign Languages, JiangXi University of Science and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I4510145 |
| authorships[3].institutions[0].ror | https://ror.org/03q0t9252 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4510145 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jiangxi University of Science and Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wenyan Xiao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Foreign Languages, JiangXi University of Science and Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2023.findings-emnlp.1025.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | PromptARA: Improving Deep Representation in Hybrid Automatic Readability Assessment with Prompt and Orthogonal Projection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13629 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Text Readability and Simplification |
| related_works | https://openalex.org/W240272210, https://openalex.org/W4239527082, https://openalex.org/W2372186565, https://openalex.org/W2089645512, https://openalex.org/W2379343790, https://openalex.org/W2359967926, https://openalex.org/W2355137669, https://openalex.org/W4251903213, https://openalex.org/W2127685231, https://openalex.org/W1999869750 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2023.findings-emnlp.1025 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2023.findings-emnlp.1025.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Findings of the Association for Computational Linguistics: EMNLP 2023 |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2023.findings-emnlp.1025 |
| primary_location.id | doi:10.18653/v1/2023.findings-emnlp.1025 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2023.findings-emnlp.1025.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Findings of the Association for Computational Linguistics: EMNLP 2023 |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2023.findings-emnlp.1025 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1746111881, https://openalex.org/W1481128830, https://openalex.org/W3015468748, https://openalex.org/W2080515068, https://openalex.org/W2916535003, https://openalex.org/W4221068952, https://openalex.org/W3134409176, https://openalex.org/W2514166524, https://openalex.org/W2781759777, https://openalex.org/W2768282280, https://openalex.org/W4385574355, https://openalex.org/W2250539671, https://openalex.org/W4221143270, https://openalex.org/W4294170691, https://openalex.org/W4287704453, https://openalex.org/W33677238, https://openalex.org/W1514242939, https://openalex.org/W3202780679, https://openalex.org/W2470673105, https://openalex.org/W3185341429, https://openalex.org/W2493916176, https://openalex.org/W3011124205, https://openalex.org/W3153427360, https://openalex.org/W4285299306, https://openalex.org/W2292103514, https://openalex.org/W4386576711, https://openalex.org/W2989815961, https://openalex.org/W2965628884, https://openalex.org/W4254113264, https://openalex.org/W2251861964, https://openalex.org/W2896457183, https://openalex.org/W1655573795, https://openalex.org/W4385573574, https://openalex.org/W3175444045, https://openalex.org/W2150783756, https://openalex.org/W4287186318, https://openalex.org/W2765247455, https://openalex.org/W2963876447, https://openalex.org/W3099585677 |
| referenced_works_count | 39 |
| abstract_inverted_index.A | 100 |
| abstract_inverted_index.a | 73 |
| abstract_inverted_index.In | 68 |
| abstract_inverted_index.an | 89 |
| abstract_inverted_index.in | 29, 63 |
| abstract_inverted_index.is | 59, 128 |
| abstract_inverted_index.of | 48, 54, 102, 117 |
| abstract_inverted_index.on | 8 |
| abstract_inverted_index.to | 3, 33, 45, 83, 93, 113, 130 |
| abstract_inverted_index.we | 71 |
| abstract_inverted_index.ARA | 66, 76 |
| abstract_inverted_index.The | 12 |
| abstract_inverted_index.and | 22, 51, 56, 88, 97, 109 |
| abstract_inverted_index.are | 40, 104 |
| abstract_inverted_index.due | 32, 44 |
| abstract_inverted_index.not | 41, 60 |
| abstract_inverted_index.the | 46, 52, 115, 118, 125 |
| abstract_inverted_index.two | 110 |
| abstract_inverted_index.aims | 2 |
| abstract_inverted_index.both | 20, 95 |
| abstract_inverted_index.deep | 21, 38, 55, 85, 96 |
| abstract_inverted_index.four | 107 |
| abstract_inverted_index.fuse | 94 |
| abstract_inverted_index.have | 25 |
| abstract_inverted_index.over | 106 |
| abstract_inverted_index.show | 114 |
| abstract_inverted_index.that | 124 |
| abstract_inverted_index.this | 69 |
| abstract_inverted_index.very | 61 |
| abstract_inverted_index.(ARA) | 17 |
| abstract_inverted_index.based | 7 |
| abstract_inverted_index.data, | 50 |
| abstract_inverted_index.fully | 42 |
| abstract_inverted_index.layer | 92 |
| abstract_inverted_index.model | 77, 127 |
| abstract_inverted_index.novel | 74 |
| abstract_inverted_index.texts | 6 |
| abstract_inverted_index.their | 34 |
| abstract_inverted_index.using | 19 |
| abstract_inverted_index.years | 31 |
| abstract_inverted_index.called | 78 |
| abstract_inverted_index.fusion | 53 |
| abstract_inverted_index.hybrid | 13, 65, 75 |
| abstract_inverted_index.model. | 120 |
| abstract_inverted_index.models | 18 |
| abstract_inverted_index.paper, | 70 |
| abstract_inverted_index.recent | 30 |
| abstract_inverted_index.rising | 27 |
| abstract_inverted_index.series | 101 |
| abstract_inverted_index.Chinese | 111 |
| abstract_inverted_index.English | 108 |
| abstract_inverted_index.corpora | 112 |
| abstract_inverted_index.feature | 86 |
| abstract_inverted_index.improve | 84 |
| abstract_inverted_index.levels. | 11 |
| abstract_inverted_index.models. | 67, 132 |
| abstract_inverted_index.prompts | 82 |
| abstract_inverted_index.propose | 72 |
| abstract_inverted_index.reading | 10 |
| abstract_inverted_index.results | 122 |
| abstract_inverted_index.through | 80 |
| abstract_inverted_index.However, | 37 |
| abstract_inverted_index.classify | 5 |
| abstract_inverted_index.existing | 64 |
| abstract_inverted_index.explored | 43 |
| abstract_inverted_index.features | 24, 39, 58 |
| abstract_inverted_index.proposed | 119, 126 |
| abstract_inverted_index.scarcity | 47 |
| abstract_inverted_index.superior | 129 |
| abstract_inverted_index.training | 49 |
| abstract_inverted_index.PromptARA | 79 |
| abstract_inverted_index.attention | 28 |
| abstract_inverted_index.attracted | 26 |
| abstract_inverted_index.automatic | 14 |
| abstract_inverted_index.conducted | 105 |
| abstract_inverted_index.effective | 62 |
| abstract_inverted_index.employing | 81 |
| abstract_inverted_index.features. | 99 |
| abstract_inverted_index.assessment | 1, 16 |
| abstract_inverted_index.impressive | 35 |
| abstract_inverted_index.linguistic | 23, 57, 98 |
| abstract_inverted_index.orthogonal | 90 |
| abstract_inverted_index.projection | 91 |
| abstract_inverted_index.readers’ | 9 |
| abstract_inverted_index.Readability | 0 |
| abstract_inverted_index.demonstrate | 123 |
| abstract_inverted_index.experiments | 103 |
| abstract_inverted_index.readability | 15 |
| abstract_inverted_index.Experimental | 121 |
| abstract_inverted_index.performance. | 36 |
| abstract_inverted_index.automatically | 4 |
| abstract_inverted_index.effectiveness | 116 |
| abstract_inverted_index.representations | 87 |
| abstract_inverted_index.state-of-the-art | 131 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.9100000262260437 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.61030189 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |