Prompting without Panic: Attribute-aware, Zero-shot, Test-Time Calibration Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.22819
Vision-language models (VLM) have demonstrated impressive performance in image recognition by leveraging self-supervised training on large datasets. Their performance can be further improved by adapting to the test sample using test-time prompt tuning (TPT). Unfortunately, the singular focus of TPT approaches on improving the accuracy suffers from tunnel vision, and leads to degradation in confidence calibration. This limits the applicability of TPT in critical applications. We make three contributions in this work. (1) We posit that random or naive initialization of prompts leads to overfitting on a particular test sample, and is the main reason for miscalibration of the VLM after TPT. To mitigate the problem, we propose careful initialization of test time prompt using prior knowledge about the target label attributes from a large language model (LLM); (2) To further maintain the quality of prompts during \tpt, we propose a novel regularization loss to reduce intraclass distance, and increase inter-class distance between the learnt Through extensive experiments on different CLIP architectures and 15 datasets, we show that our approach can effectively improve the calibration after TPT. We report an average expected calibration error (ECE) of 4.11 with our method, TCA, compared to 11.7 for vanilla TPT, 6.12 for C-TPT (ICLR'24), 6.78 for DiffTPT (CVPR'23), and 8.43 for PromptAlign (NeurIPS'23). The code is publicly accessible at: https://github.com/rhebbalaguppe/TCA_PromptWithoutPanic.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.22819
- https://arxiv.org/pdf/2506.22819
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416507476
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416507476Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.22819Digital Object Identifier
- Title
-
Prompting without Panic: Attribute-aware, Zero-shot, Test-Time CalibrationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-28Full publication date if available
- Authors
-
Tamoghno Kandar, Chetan AroraList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.22819Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.22819Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.22819Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416507476 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.22819 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.22819 |
| ids.openalex | https://openalex.org/W4416507476 |
| fwci | |
| type | preprint |
| title | Prompting without Panic: Attribute-aware, Zero-shot, Test-Time Calibration |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.22819 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.22819 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.22819 |
| locations[1].id | doi:10.48550/arxiv.2506.22819 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.22819 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5120419412 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Tamoghno Kandar |
| authorships[0].author_position | last |
| authorships[0].raw_author_name | Kandar, Tamoghno |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5019739552 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1466-7386 |
| authorships[1].author.display_name | Chetan Arora |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Arora, Chetan |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.22819 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Prompting without Panic: Attribute-aware, Zero-shot, Test-Time Calibration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T16:04:01.189229 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.22819 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.22819 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.22819 |
| primary_location.id | pmh:oai:arXiv.org:2506.22819 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.22819 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.22819 |
| publication_date | 2025-06-28 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 86, 123, 140 |
| abstract_inverted_index.15 | 163 |
| abstract_inverted_index.To | 102, 129 |
| abstract_inverted_index.We | 65, 73, 177 |
| abstract_inverted_index.an | 179 |
| abstract_inverted_index.be | 20 |
| abstract_inverted_index.by | 10, 23 |
| abstract_inverted_index.in | 7, 53, 62, 69 |
| abstract_inverted_index.is | 91, 212 |
| abstract_inverted_index.of | 38, 60, 80, 97, 110, 134, 185 |
| abstract_inverted_index.on | 14, 41, 85, 158 |
| abstract_inverted_index.or | 77 |
| abstract_inverted_index.to | 25, 51, 83, 144, 192 |
| abstract_inverted_index.we | 106, 138, 165 |
| abstract_inverted_index.(1) | 72 |
| abstract_inverted_index.(2) | 128 |
| abstract_inverted_index.TPT | 39, 61 |
| abstract_inverted_index.The | 210 |
| abstract_inverted_index.VLM | 99 |
| abstract_inverted_index.and | 49, 90, 148, 162, 205 |
| abstract_inverted_index.at: | 215 |
| abstract_inverted_index.can | 19, 170 |
| abstract_inverted_index.for | 95, 194, 198, 202, 207 |
| abstract_inverted_index.our | 168, 188 |
| abstract_inverted_index.the | 26, 35, 43, 58, 92, 98, 104, 118, 132, 153, 173 |
| abstract_inverted_index.11.7 | 193 |
| abstract_inverted_index.4.11 | 186 |
| abstract_inverted_index.6.12 | 197 |
| abstract_inverted_index.6.78 | 201 |
| abstract_inverted_index.8.43 | 206 |
| abstract_inverted_index.CLIP | 160 |
| abstract_inverted_index.TCA, | 190 |
| abstract_inverted_index.TPT, | 196 |
| abstract_inverted_index.TPT. | 101, 176 |
| abstract_inverted_index.This | 56 |
| abstract_inverted_index.code | 211 |
| abstract_inverted_index.from | 46, 122 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.loss | 143 |
| abstract_inverted_index.main | 93 |
| abstract_inverted_index.make | 66 |
| abstract_inverted_index.show | 166 |
| abstract_inverted_index.test | 27, 88, 111 |
| abstract_inverted_index.that | 75, 167 |
| abstract_inverted_index.this | 70 |
| abstract_inverted_index.time | 112 |
| abstract_inverted_index.with | 187 |
| abstract_inverted_index.(ECE) | 184 |
| abstract_inverted_index.(VLM) | 2 |
| abstract_inverted_index.C-TPT | 199 |
| abstract_inverted_index.Their | 17 |
| abstract_inverted_index.\tpt, | 137 |
| abstract_inverted_index.about | 117 |
| abstract_inverted_index.after | 100, 175 |
| abstract_inverted_index.error | 183 |
| abstract_inverted_index.focus | 37 |
| abstract_inverted_index.image | 8 |
| abstract_inverted_index.label | 120 |
| abstract_inverted_index.large | 15, 124 |
| abstract_inverted_index.leads | 50, 82 |
| abstract_inverted_index.model | 126 |
| abstract_inverted_index.naive | 78 |
| abstract_inverted_index.novel | 141 |
| abstract_inverted_index.posit | 74 |
| abstract_inverted_index.prior | 115 |
| abstract_inverted_index.three | 67 |
| abstract_inverted_index.using | 29, 114 |
| abstract_inverted_index.work. | 71 |
| abstract_inverted_index.(LLM); | 127 |
| abstract_inverted_index.(TPT). | 33 |
| abstract_inverted_index.during | 136 |
| abstract_inverted_index.learnt | 154 |
| abstract_inverted_index.limits | 57 |
| abstract_inverted_index.models | 1 |
| abstract_inverted_index.prompt | 31, 113 |
| abstract_inverted_index.random | 76 |
| abstract_inverted_index.reason | 94 |
| abstract_inverted_index.reduce | 145 |
| abstract_inverted_index.report | 178 |
| abstract_inverted_index.sample | 28 |
| abstract_inverted_index.target | 119 |
| abstract_inverted_index.tuning | 32 |
| abstract_inverted_index.tunnel | 47 |
| abstract_inverted_index.DiffTPT | 203 |
| abstract_inverted_index.Through | 155 |
| abstract_inverted_index.average | 180 |
| abstract_inverted_index.between | 152 |
| abstract_inverted_index.careful | 108 |
| abstract_inverted_index.further | 21, 130 |
| abstract_inverted_index.improve | 172 |
| abstract_inverted_index.method, | 189 |
| abstract_inverted_index.prompts | 81, 135 |
| abstract_inverted_index.propose | 107, 139 |
| abstract_inverted_index.quality | 133 |
| abstract_inverted_index.sample, | 89 |
| abstract_inverted_index.suffers | 45 |
| abstract_inverted_index.vanilla | 195 |
| abstract_inverted_index.vision, | 48 |
| abstract_inverted_index.accuracy | 44 |
| abstract_inverted_index.adapting | 24 |
| abstract_inverted_index.approach | 169 |
| abstract_inverted_index.compared | 191 |
| abstract_inverted_index.critical | 63 |
| abstract_inverted_index.distance | 151 |
| abstract_inverted_index.expected | 181 |
| abstract_inverted_index.improved | 22 |
| abstract_inverted_index.increase | 149 |
| abstract_inverted_index.language | 125 |
| abstract_inverted_index.maintain | 131 |
| abstract_inverted_index.mitigate | 103 |
| abstract_inverted_index.problem, | 105 |
| abstract_inverted_index.publicly | 213 |
| abstract_inverted_index.singular | 36 |
| abstract_inverted_index.training | 13 |
| abstract_inverted_index.datasets, | 164 |
| abstract_inverted_index.datasets. | 16 |
| abstract_inverted_index.different | 159 |
| abstract_inverted_index.distance, | 147 |
| abstract_inverted_index.extensive | 156 |
| abstract_inverted_index.improving | 42 |
| abstract_inverted_index.knowledge | 116 |
| abstract_inverted_index.test-time | 30 |
| abstract_inverted_index.(CVPR'23), | 204 |
| abstract_inverted_index.(ICLR'24), | 200 |
| abstract_inverted_index.accessible | 214 |
| abstract_inverted_index.approaches | 40 |
| abstract_inverted_index.attributes | 121 |
| abstract_inverted_index.confidence | 54 |
| abstract_inverted_index.impressive | 5 |
| abstract_inverted_index.intraclass | 146 |
| abstract_inverted_index.leveraging | 11 |
| abstract_inverted_index.particular | 87 |
| abstract_inverted_index.PromptAlign | 208 |
| abstract_inverted_index.calibration | 174, 182 |
| abstract_inverted_index.degradation | 52 |
| abstract_inverted_index.effectively | 171 |
| abstract_inverted_index.experiments | 157 |
| abstract_inverted_index.inter-class | 150 |
| abstract_inverted_index.overfitting | 84 |
| abstract_inverted_index.performance | 6, 18 |
| abstract_inverted_index.recognition | 9 |
| abstract_inverted_index.calibration. | 55 |
| abstract_inverted_index.demonstrated | 4 |
| abstract_inverted_index.(NeurIPS'23). | 209 |
| abstract_inverted_index.applicability | 59 |
| abstract_inverted_index.applications. | 64 |
| abstract_inverted_index.architectures | 161 |
| abstract_inverted_index.contributions | 68 |
| abstract_inverted_index.Unfortunately, | 34 |
| abstract_inverted_index.initialization | 79, 109 |
| abstract_inverted_index.miscalibration | 96 |
| abstract_inverted_index.regularization | 142 |
| abstract_inverted_index.Vision-language | 0 |
| abstract_inverted_index.self-supervised | 12 |
| abstract_inverted_index.https://github.com/rhebbalaguppe/TCA_PromptWithoutPanic. | 216 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |