PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2307.15199
In a joint vision-language space, a text feature (e.g., from "a photo of a dog") could effectively represent its relevant image features (e.g., from dog photos). Also, a recent study has demonstrated the cross-modal transferability phenomenon of this joint space. From these observations, we propose PromptStyler which simulates various distribution shifts in the joint space by synthesizing diverse styles via prompts without using any images to deal with source-free domain generalization. The proposed method learns to generate a variety of style features (from "a S* style of a") via learnable style word vectors for pseudo-words S*. To ensure that learned styles do not distort content information, we force style-content features (from "a S* style of a [class]") to be located nearby their corresponding content features (from "[class]") in the joint vision-language space. After learning style word vectors, we train a linear classifier using synthesized style-content features. PromptStyler achieves the state of the art on PACS, VLCS, OfficeHome and DomainNet, even though it does not require any images for training.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2307.15199
- https://arxiv.org/pdf/2307.15199
- OA Status
- green
- Cited By
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385436612
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385436612Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2307.15199Digital Object Identifier
- Title
-
PromptStyler: Prompt-driven Style Generation for Source-free Domain GeneralizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-27Full publication date if available
- Authors
-
Junhyeong Cho, Gilhyun Nam, Sungyeon Kim, Hunmin Yang, Suha KwakList of authors in order
- Landing page
-
https://arxiv.org/abs/2307.15199Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2307.15199Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2307.15199Direct OA link when available
- Concepts
-
Computer science, Generalization, Style (visual arts), Artificial intelligence, Joint (building), Classifier (UML), Space (punctuation), Class (philosophy), Feature vector, Natural language processing, Speech recognition, Pattern recognition (psychology), Mathematics, Engineering, Archaeology, History, Mathematical analysis, Operating system, Architectural engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385436612 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2307.15199 |
| ids.doi | https://doi.org/10.48550/arxiv.2307.15199 |
| ids.openalex | https://openalex.org/W4385436612 |
| fwci | |
| type | preprint |
| title | PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T11550 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9470999836921692 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6884598135948181 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C177148314 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5845458507537842 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[1].display_name | Generalization |
| concepts[2].id | https://openalex.org/C2776445246 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5833607316017151 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1792644 |
| concepts[2].display_name | Style (visual arts) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5270648002624512 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C18555067 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5187709331512451 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8375051 |
| concepts[4].display_name | Joint (building) |
| concepts[5].id | https://openalex.org/C95623464 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5122846364974976 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[5].display_name | Classifier (UML) |
| concepts[6].id | https://openalex.org/C2778572836 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5046883821487427 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[6].display_name | Space (punctuation) |
| concepts[7].id | https://openalex.org/C2777212361 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49024587869644165 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[7].display_name | Class (philosophy) |
| concepts[8].id | https://openalex.org/C83665646 |
| concepts[8].level | 2 |
| concepts[8].score | 0.454710990190506 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[8].display_name | Feature vector |
| concepts[9].id | https://openalex.org/C204321447 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4152674674987793 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[9].display_name | Natural language processing |
| concepts[10].id | https://openalex.org/C28490314 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3590289354324341 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[10].display_name | Speech recognition |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.33580484986305237 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1545359194278717 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0788196325302124 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C166957645 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[14].display_name | Archaeology |
| concepts[15].id | https://openalex.org/C95457728 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[15].display_name | History |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C170154142 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[18].display_name | Architectural engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6884598135948181 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/generalization |
| keywords[1].score | 0.5845458507537842 |
| keywords[1].display_name | Generalization |
| keywords[2].id | https://openalex.org/keywords/style |
| keywords[2].score | 0.5833607316017151 |
| keywords[2].display_name | Style (visual arts) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5270648002624512 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/joint |
| keywords[4].score | 0.5187709331512451 |
| keywords[4].display_name | Joint (building) |
| keywords[5].id | https://openalex.org/keywords/classifier |
| keywords[5].score | 0.5122846364974976 |
| keywords[5].display_name | Classifier (UML) |
| keywords[6].id | https://openalex.org/keywords/space |
| keywords[6].score | 0.5046883821487427 |
| keywords[6].display_name | Space (punctuation) |
| keywords[7].id | https://openalex.org/keywords/class |
| keywords[7].score | 0.49024587869644165 |
| keywords[7].display_name | Class (philosophy) |
| keywords[8].id | https://openalex.org/keywords/feature-vector |
| keywords[8].score | 0.454710990190506 |
| keywords[8].display_name | Feature vector |
| keywords[9].id | https://openalex.org/keywords/natural-language-processing |
| keywords[9].score | 0.4152674674987793 |
| keywords[9].display_name | Natural language processing |
| keywords[10].id | https://openalex.org/keywords/speech-recognition |
| keywords[10].score | 0.3590289354324341 |
| keywords[10].display_name | Speech recognition |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.33580484986305237 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.1545359194278717 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.0788196325302124 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2307.15199 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2307.15199 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2307.15199 |
| locations[1].id | doi:10.48550/arxiv.2307.15199 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2307.15199 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5013096795 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Junhyeong Cho |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cho, Junhyeong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5040443349 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-3195-4538 |
| authorships[1].author.display_name | Gilhyun Nam |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nam, Gilhyun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5050716923 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6919-4822 |
| authorships[2].author.display_name | Sungyeon Kim |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kim, Sungyeon |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024102285 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-1625-2957 |
| authorships[3].author.display_name | Hunmin Yang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yang, Hunmin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5060343759 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4567-9091 |
| authorships[4].author.display_name | Suha Kwak |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kwak, Suha |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2307.15199 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-08-01T00:00:00 |
| display_name | PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W3162204513, https://openalex.org/W2356229341, https://openalex.org/W2371138613, https://openalex.org/W2048963458, https://openalex.org/W43109613, https://openalex.org/W2359952343, https://openalex.org/W2239445980, https://openalex.org/W2349768204, https://openalex.org/W2080152487, https://openalex.org/W3083152911 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2307.15199 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2307.15199 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2307.15199 |
| primary_location.id | pmh:oai:arXiv.org:2307.15199 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2307.15199 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2307.15199 |
| publication_date | 2023-07-27 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 1, 5, 13, 27, 77, 115, 139 |
| abstract_inverted_index."a | 10, 83, 111 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.S* | 84, 112 |
| abstract_inverted_index.To | 96 |
| abstract_inverted_index.be | 118 |
| abstract_inverted_index.by | 55 |
| abstract_inverted_index.do | 101 |
| abstract_inverted_index.in | 51, 127 |
| abstract_inverted_index.it | 161 |
| abstract_inverted_index.of | 12, 36, 79, 86, 114, 150 |
| abstract_inverted_index.on | 153 |
| abstract_inverted_index.to | 65, 75, 117 |
| abstract_inverted_index.we | 43, 106, 137 |
| abstract_inverted_index.S*. | 95 |
| abstract_inverted_index.The | 71 |
| abstract_inverted_index.a") | 87 |
| abstract_inverted_index.and | 157 |
| abstract_inverted_index.any | 63, 165 |
| abstract_inverted_index.art | 152 |
| abstract_inverted_index.dog | 24 |
| abstract_inverted_index.for | 93, 167 |
| abstract_inverted_index.has | 30 |
| abstract_inverted_index.its | 18 |
| abstract_inverted_index.not | 102, 163 |
| abstract_inverted_index.the | 32, 52, 128, 148, 151 |
| abstract_inverted_index.via | 59, 88 |
| abstract_inverted_index.From | 40 |
| abstract_inverted_index.deal | 66 |
| abstract_inverted_index.does | 162 |
| abstract_inverted_index.even | 159 |
| abstract_inverted_index.from | 9, 23 |
| abstract_inverted_index.text | 6 |
| abstract_inverted_index.that | 98 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.with | 67 |
| abstract_inverted_index.word | 91, 135 |
| abstract_inverted_index.(from | 82, 110, 125 |
| abstract_inverted_index.After | 132 |
| abstract_inverted_index.Also, | 26 |
| abstract_inverted_index.PACS, | 154 |
| abstract_inverted_index.VLCS, | 155 |
| abstract_inverted_index.could | 15 |
| abstract_inverted_index.dog") | 14 |
| abstract_inverted_index.force | 107 |
| abstract_inverted_index.image | 20 |
| abstract_inverted_index.joint | 2, 38, 53, 129 |
| abstract_inverted_index.photo | 11 |
| abstract_inverted_index.space | 54 |
| abstract_inverted_index.state | 149 |
| abstract_inverted_index.study | 29 |
| abstract_inverted_index.style | 80, 85, 90, 113, 134 |
| abstract_inverted_index.their | 121 |
| abstract_inverted_index.these | 41 |
| abstract_inverted_index.train | 138 |
| abstract_inverted_index.using | 62, 142 |
| abstract_inverted_index.which | 46 |
| abstract_inverted_index.(e.g., | 8, 22 |
| abstract_inverted_index.domain | 69 |
| abstract_inverted_index.ensure | 97 |
| abstract_inverted_index.images | 64, 166 |
| abstract_inverted_index.learns | 74 |
| abstract_inverted_index.linear | 140 |
| abstract_inverted_index.method | 73 |
| abstract_inverted_index.nearby | 120 |
| abstract_inverted_index.recent | 28 |
| abstract_inverted_index.shifts | 50 |
| abstract_inverted_index.space, | 4 |
| abstract_inverted_index.space. | 39, 131 |
| abstract_inverted_index.styles | 58, 100 |
| abstract_inverted_index.though | 160 |
| abstract_inverted_index.content | 104, 123 |
| abstract_inverted_index.distort | 103 |
| abstract_inverted_index.diverse | 57 |
| abstract_inverted_index.feature | 7 |
| abstract_inverted_index.learned | 99 |
| abstract_inverted_index.located | 119 |
| abstract_inverted_index.prompts | 60 |
| abstract_inverted_index.propose | 44 |
| abstract_inverted_index.require | 164 |
| abstract_inverted_index.variety | 78 |
| abstract_inverted_index.various | 48 |
| abstract_inverted_index.vectors | 92 |
| abstract_inverted_index.without | 61 |
| abstract_inverted_index.achieves | 147 |
| abstract_inverted_index.features | 21, 81, 109, 124 |
| abstract_inverted_index.generate | 76 |
| abstract_inverted_index.learning | 133 |
| abstract_inverted_index.photos). | 25 |
| abstract_inverted_index.proposed | 72 |
| abstract_inverted_index.relevant | 19 |
| abstract_inverted_index.vectors, | 136 |
| abstract_inverted_index.[class]") | 116 |
| abstract_inverted_index.features. | 145 |
| abstract_inverted_index.learnable | 89 |
| abstract_inverted_index.represent | 17 |
| abstract_inverted_index.simulates | 47 |
| abstract_inverted_index.training. | 168 |
| abstract_inverted_index."[class]") | 126 |
| abstract_inverted_index.DomainNet, | 158 |
| abstract_inverted_index.OfficeHome | 156 |
| abstract_inverted_index.classifier | 141 |
| abstract_inverted_index.phenomenon | 35 |
| abstract_inverted_index.cross-modal | 33 |
| abstract_inverted_index.effectively | 16 |
| abstract_inverted_index.source-free | 68 |
| abstract_inverted_index.synthesized | 143 |
| abstract_inverted_index.PromptStyler | 45, 146 |
| abstract_inverted_index.demonstrated | 31 |
| abstract_inverted_index.distribution | 49 |
| abstract_inverted_index.information, | 105 |
| abstract_inverted_index.pseudo-words | 94 |
| abstract_inverted_index.synthesizing | 56 |
| abstract_inverted_index.corresponding | 122 |
| abstract_inverted_index.observations, | 42 |
| abstract_inverted_index.style-content | 108, 144 |
| abstract_inverted_index.generalization. | 70 |
| abstract_inverted_index.transferability | 34 |
| abstract_inverted_index.vision-language | 3, 130 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |