Propagation Dynamics of Rumor vs. Non-rumor across Multiple Social Media Platforms Driven by User Characteristics Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.17840
Studying information propagation dynamics in social media can elucidate user behaviors and patterns. However, previous research often focuses on single platforms and fails to differentiate between the nuanced roles of source users and other participants in cascades. To address these limitations, we analyze propagation cascades on Twitter and Weibo combined with a crawled dataset of nearly one million users with authentic attributes. Our preliminary findings from multiple platforms robustly indicate that rumors tend to spread more deeply, while non-rumors distribute more broadly. Interestingly, we discover that the spread of rumors is slower, persists longer, and, in most cases, involves fewer participants than that of non-rumors. And an undiscovered highlight is that reputable active users, termed `onlookers', inadvertently or unwittingly spread rumors due to their extensive online interactions and the allure of sensational fake news. Conversely, celebrities exhibit caution, mindful of releasing unverified information. Additionally, we identify cascade features aligning with exponential patterns, highlight the Credibility Erosion Effect (CEE) phenomenon in the propagation process, and discover the different contents and policies between the two platforms. Our findings enhance current understanding and provide a valuable statistical analysis for future research.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.17840
- https://arxiv.org/pdf/2401.17840
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391462946
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391462946Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.17840Digital Object Identifier
- Title
-
Propagation Dynamics of Rumor vs. Non-rumor across Multiple Social Media Platforms Driven by User CharacteristicsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-31Full publication date if available
- Authors
-
Dongpeng Hou, Shu Yin, Chao Gao, Xianghua Li, Zhen WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.17840Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.17840Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.17840Direct OA link when available
- Concepts
-
Rumor, Social media, Dynamics (music), Computer science, Data science, World Wide Web, Political science, Physics, Public relations, AcousticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391462946 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.17840 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.17840 |
| ids.openalex | https://openalex.org/W4391462946 |
| fwci | |
| type | preprint |
| title | Propagation Dynamics of Rumor vs. Non-rumor across Multiple Social Media Platforms Driven by User Characteristics |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12592 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Opinion Dynamics and Social Influence |
| topics[1].id | https://openalex.org/T10064 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Complex Network Analysis Techniques |
| topics[2].id | https://openalex.org/T11147 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.994700014591217 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3312 |
| topics[2].subfield.display_name | Sociology and Political Science |
| topics[2].display_name | Misinformation and Its Impacts |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780469804 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9907608032226562 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q878352 |
| concepts[0].display_name | Rumor |
| concepts[1].id | https://openalex.org/C518677369 |
| concepts[1].level | 2 |
| concepts[1].score | 0.670464813709259 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[1].display_name | Social media |
| concepts[2].id | https://openalex.org/C145912823 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5339034795761108 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q113558 |
| concepts[2].display_name | Dynamics (music) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4201130270957947 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33784645795822144 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C136764020 |
| concepts[5].level | 1 |
| concepts[5].score | 0.22869151830673218 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[5].display_name | World Wide Web |
| concepts[6].id | https://openalex.org/C17744445 |
| concepts[6].level | 0 |
| concepts[6].score | 0.18824177980422974 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[6].display_name | Political science |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.18359220027923584 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C39549134 |
| concepts[8].level | 1 |
| concepts[8].score | 0.08578541874885559 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q133080 |
| concepts[8].display_name | Public relations |
| concepts[9].id | https://openalex.org/C24890656 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0733565092086792 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[9].display_name | Acoustics |
| keywords[0].id | https://openalex.org/keywords/rumor |
| keywords[0].score | 0.9907608032226562 |
| keywords[0].display_name | Rumor |
| keywords[1].id | https://openalex.org/keywords/social-media |
| keywords[1].score | 0.670464813709259 |
| keywords[1].display_name | Social media |
| keywords[2].id | https://openalex.org/keywords/dynamics |
| keywords[2].score | 0.5339034795761108 |
| keywords[2].display_name | Dynamics (music) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4201130270957947 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.33784645795822144 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/world-wide-web |
| keywords[5].score | 0.22869151830673218 |
| keywords[5].display_name | World Wide Web |
| keywords[6].id | https://openalex.org/keywords/political-science |
| keywords[6].score | 0.18824177980422974 |
| keywords[6].display_name | Political science |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.18359220027923584 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/public-relations |
| keywords[8].score | 0.08578541874885559 |
| keywords[8].display_name | Public relations |
| keywords[9].id | https://openalex.org/keywords/acoustics |
| keywords[9].score | 0.0733565092086792 |
| keywords[9].display_name | Acoustics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.17840 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.17840 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.17840 |
| locations[1].id | doi:10.48550/arxiv.2401.17840 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.17840 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101233265 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dongpeng Hou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hou, Dongpeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077743963 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5449-4937 |
| authorships[1].author.display_name | Shu Yin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yin, Shu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5086236078 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5865-2285 |
| authorships[2].author.display_name | Chao Gao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gao, Chao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100680344 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0253-3882 |
| authorships[3].author.display_name | Xianghua Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Xianghua |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100422377 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8182-2852 |
| authorships[4].author.display_name | Zhen Wang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wang, Zhen |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.17840 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-02T00:00:00 |
| display_name | Propagation Dynamics of Rumor vs. Non-rumor across Multiple Social Media Platforms Driven by User Characteristics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12592 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Opinion Dynamics and Social Influence |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2372853429, https://openalex.org/W2793319716, https://openalex.org/W3110636174, https://openalex.org/W4210503589, https://openalex.org/W2810386322, https://openalex.org/W2908713064, https://openalex.org/W2801267666, https://openalex.org/W4213140416, https://openalex.org/W2188429085 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.17840 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.17840 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.17840 |
| primary_location.id | pmh:oai:arXiv.org:2401.17840 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.17840 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.17840 |
| publication_date | 2024-01-31 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 51, 181 |
| abstract_inverted_index.To | 37 |
| abstract_inverted_index.an | 106 |
| abstract_inverted_index.in | 4, 35, 95, 159 |
| abstract_inverted_index.is | 90, 109 |
| abstract_inverted_index.of | 29, 54, 88, 103, 130, 139 |
| abstract_inverted_index.on | 18, 45 |
| abstract_inverted_index.or | 117 |
| abstract_inverted_index.to | 23, 73, 122 |
| abstract_inverted_index.we | 41, 83, 144 |
| abstract_inverted_index.And | 105 |
| abstract_inverted_index.Our | 62, 174 |
| abstract_inverted_index.and | 11, 21, 32, 47, 127, 163, 168, 179 |
| abstract_inverted_index.can | 7 |
| abstract_inverted_index.due | 121 |
| abstract_inverted_index.for | 185 |
| abstract_inverted_index.one | 56 |
| abstract_inverted_index.the | 26, 86, 128, 153, 160, 165, 171 |
| abstract_inverted_index.two | 172 |
| abstract_inverted_index.and, | 94 |
| abstract_inverted_index.fake | 132 |
| abstract_inverted_index.from | 65 |
| abstract_inverted_index.more | 75, 80 |
| abstract_inverted_index.most | 96 |
| abstract_inverted_index.tend | 72 |
| abstract_inverted_index.than | 101 |
| abstract_inverted_index.that | 70, 85, 102, 110 |
| abstract_inverted_index.user | 9 |
| abstract_inverted_index.with | 50, 59, 149 |
| abstract_inverted_index.(CEE) | 157 |
| abstract_inverted_index.Weibo | 48 |
| abstract_inverted_index.fails | 22 |
| abstract_inverted_index.fewer | 99 |
| abstract_inverted_index.media | 6 |
| abstract_inverted_index.news. | 133 |
| abstract_inverted_index.often | 16 |
| abstract_inverted_index.other | 33 |
| abstract_inverted_index.roles | 28 |
| abstract_inverted_index.their | 123 |
| abstract_inverted_index.these | 39 |
| abstract_inverted_index.users | 31, 58 |
| abstract_inverted_index.while | 77 |
| abstract_inverted_index.Effect | 156 |
| abstract_inverted_index.active | 112 |
| abstract_inverted_index.allure | 129 |
| abstract_inverted_index.cases, | 97 |
| abstract_inverted_index.future | 186 |
| abstract_inverted_index.nearly | 55 |
| abstract_inverted_index.online | 125 |
| abstract_inverted_index.rumors | 71, 89, 120 |
| abstract_inverted_index.single | 19 |
| abstract_inverted_index.social | 5 |
| abstract_inverted_index.source | 30 |
| abstract_inverted_index.spread | 74, 87, 119 |
| abstract_inverted_index.termed | 114 |
| abstract_inverted_index.users, | 113 |
| abstract_inverted_index.Erosion | 155 |
| abstract_inverted_index.Twitter | 46 |
| abstract_inverted_index.address | 38 |
| abstract_inverted_index.analyze | 42 |
| abstract_inverted_index.between | 25, 170 |
| abstract_inverted_index.cascade | 146 |
| abstract_inverted_index.crawled | 52 |
| abstract_inverted_index.current | 177 |
| abstract_inverted_index.dataset | 53 |
| abstract_inverted_index.deeply, | 76 |
| abstract_inverted_index.enhance | 176 |
| abstract_inverted_index.exhibit | 136 |
| abstract_inverted_index.focuses | 17 |
| abstract_inverted_index.longer, | 93 |
| abstract_inverted_index.million | 57 |
| abstract_inverted_index.mindful | 138 |
| abstract_inverted_index.nuanced | 27 |
| abstract_inverted_index.provide | 180 |
| abstract_inverted_index.slower, | 91 |
| abstract_inverted_index.However, | 13 |
| abstract_inverted_index.Studying | 0 |
| abstract_inverted_index.aligning | 148 |
| abstract_inverted_index.analysis | 184 |
| abstract_inverted_index.broadly. | 81 |
| abstract_inverted_index.cascades | 44 |
| abstract_inverted_index.caution, | 137 |
| abstract_inverted_index.combined | 49 |
| abstract_inverted_index.contents | 167 |
| abstract_inverted_index.discover | 84, 164 |
| abstract_inverted_index.dynamics | 3 |
| abstract_inverted_index.features | 147 |
| abstract_inverted_index.findings | 64, 175 |
| abstract_inverted_index.identify | 145 |
| abstract_inverted_index.indicate | 69 |
| abstract_inverted_index.involves | 98 |
| abstract_inverted_index.multiple | 66 |
| abstract_inverted_index.persists | 92 |
| abstract_inverted_index.policies | 169 |
| abstract_inverted_index.previous | 14 |
| abstract_inverted_index.process, | 162 |
| abstract_inverted_index.research | 15 |
| abstract_inverted_index.robustly | 68 |
| abstract_inverted_index.valuable | 182 |
| abstract_inverted_index.authentic | 60 |
| abstract_inverted_index.behaviors | 10 |
| abstract_inverted_index.cascades. | 36 |
| abstract_inverted_index.different | 166 |
| abstract_inverted_index.elucidate | 8 |
| abstract_inverted_index.extensive | 124 |
| abstract_inverted_index.highlight | 108, 152 |
| abstract_inverted_index.patterns, | 151 |
| abstract_inverted_index.patterns. | 12 |
| abstract_inverted_index.platforms | 20, 67 |
| abstract_inverted_index.releasing | 140 |
| abstract_inverted_index.reputable | 111 |
| abstract_inverted_index.research. | 187 |
| abstract_inverted_index.distribute | 79 |
| abstract_inverted_index.non-rumors | 78 |
| abstract_inverted_index.phenomenon | 158 |
| abstract_inverted_index.platforms. | 173 |
| abstract_inverted_index.unverified | 141 |
| abstract_inverted_index.Conversely, | 134 |
| abstract_inverted_index.Credibility | 154 |
| abstract_inverted_index.attributes. | 61 |
| abstract_inverted_index.celebrities | 135 |
| abstract_inverted_index.exponential | 150 |
| abstract_inverted_index.information | 1 |
| abstract_inverted_index.non-rumors. | 104 |
| abstract_inverted_index.preliminary | 63 |
| abstract_inverted_index.propagation | 2, 43, 161 |
| abstract_inverted_index.sensational | 131 |
| abstract_inverted_index.statistical | 183 |
| abstract_inverted_index.unwittingly | 118 |
| abstract_inverted_index.`onlookers', | 115 |
| abstract_inverted_index.information. | 142 |
| abstract_inverted_index.interactions | 126 |
| abstract_inverted_index.limitations, | 40 |
| abstract_inverted_index.participants | 34, 100 |
| abstract_inverted_index.undiscovered | 107 |
| abstract_inverted_index.Additionally, | 143 |
| abstract_inverted_index.differentiate | 24 |
| abstract_inverted_index.inadvertently | 116 |
| abstract_inverted_index.understanding | 178 |
| abstract_inverted_index.Interestingly, | 82 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |