PropEM-L: Radio Propagation Environment Modeling and Learning for Communication-Aware Multi-Robot Exploration Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.15607/rss.2022.xviii.014
Multi-robot exploration of complex, unknown environments benefits from the collaboration and cooperation offered by inter-robot communication.Accurate radio signal strength prediction enables communication-aware exploration.Models which ignore the effect of the environment on signal propagation or rely on a priori maps suffer in unknown, communication-restricted (e.g.subterranean) environments.In this work, we present Propagation Environment Modeling and Learning (PropEM-L), a framework which leverages real-time sensor-derived 3D geometric representations of an environment to extract information about line of sight between radios and attenuating walls/obstacles in order to accurately predict received signal strength (RSS).Our data-driven approach combines the strengths of well-known models of signal propagation phenomena (e.g.shadowing, reflection, diffraction) and machine learning, and can adapt online to new environments.We demonstrate the performance of PropEM-L on a six-robot team in a communicationrestricted environment with subway-like, mine-like, and cave-like characteristics, constructed for the 2021 DARPA Subterranean Challenge.Our findings indicate that PropEM-L can improve signal strength prediction accuracy by up to 44% over a logdistance path loss model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.15607/rss.2022.xviii.014
- https://doi.org/10.15607/rss.2022.xviii.014
- OA Status
- gold
- Cited By
- 10
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283783984
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283783984Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.15607/rss.2022.xviii.014Digital Object Identifier
- Title
-
PropEM-L: Radio Propagation Environment Modeling and Learning for Communication-Aware Multi-Robot ExplorationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-27Full publication date if available
- Authors
-
Lillian Clark, Jeffrey A. Edlund, Marc Sánchez Net, Tiago Vaquero, Ali‐akbar Agha‐mohammadiList of authors in order
- Landing page
-
https://doi.org/10.15607/rss.2022.xviii.014Publisher landing page
- PDF URL
-
https://doi.org/10.15607/rss.2022.xviii.014Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.15607/rss.2022.xviii.014Direct OA link when available
- Concepts
-
Computer science, Robot, Human–computer interaction, Mobile robot, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 3, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283783984 |
|---|---|
| doi | https://doi.org/10.15607/rss.2022.xviii.014 |
| ids.doi | https://doi.org/10.15607/rss.2022.xviii.014 |
| ids.openalex | https://openalex.org/W4283783984 |
| fwci | 3.38180761 |
| type | article |
| title | PropEM-L: Radio Propagation Environment Modeling and Learning for Communication-Aware Multi-Robot Exploration |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12042 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9721999764442444 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Satellite Communication Systems |
| topics[1].id | https://openalex.org/T11896 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9610999822616577 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Opportunistic and Delay-Tolerant Networks |
| topics[2].id | https://openalex.org/T13382 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9520999789237976 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Robotics and Automated Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.714418351650238 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C90509273 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5519763231277466 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[1].display_name | Robot |
| concepts[2].id | https://openalex.org/C107457646 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4421408176422119 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[2].display_name | Human–computer interaction |
| concepts[3].id | https://openalex.org/C19966478 |
| concepts[3].level | 3 |
| concepts[3].score | 0.41325628757476807 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[3].display_name | Mobile robot |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3367398977279663 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.714418351650238 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/robot |
| keywords[1].score | 0.5519763231277466 |
| keywords[1].display_name | Robot |
| keywords[2].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[2].score | 0.4421408176422119 |
| keywords[2].display_name | Human–computer interaction |
| keywords[3].id | https://openalex.org/keywords/mobile-robot |
| keywords[3].score | 0.41325628757476807 |
| keywords[3].display_name | Mobile robot |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3367398977279663 |
| keywords[4].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.15607/rss.2022.xviii.014 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.15607/rss.2022.xviii.014 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Robotics: Science and Systems XVIII |
| locations[0].landing_page_url | https://doi.org/10.15607/rss.2022.xviii.014 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5014766728 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5316-8654 |
| authorships[0].author.display_name | Lillian Clark |
| authorships[0].countries | US |
| authorships[0].affiliations[0].raw_affiliation_string | Robotics: Science and Systems New York City, NY, USA, |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I1174212 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Southern California |
| authorships[0].institutions[0].id | https://openalex.org/I1174212 |
| authorships[0].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Southern California |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lillian Clark |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Southern California, Robotics: Science and Systems New York City, NY, USA, |
| authorships[1].author.id | https://openalex.org/A5033736433 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3092-4493 |
| authorships[1].author.display_name | Jeffrey A. Edlund |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1334627681 |
| authorships[1].affiliations[0].raw_affiliation_string | NASA Jet Propulsion Laboratory, California Institute of Technology |
| authorships[1].institutions[0].id | https://openalex.org/I1334627681 |
| authorships[1].institutions[0].ror | https://ror.org/027k65916 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I122411786, https://openalex.org/I1334627681, https://openalex.org/I4210124779 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Jet Propulsion Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jeffrey Edlund |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | NASA Jet Propulsion Laboratory, California Institute of Technology |
| authorships[2].author.id | https://openalex.org/A5080078972 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1751-6372 |
| authorships[2].author.display_name | Marc Sánchez Net |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1334627681 |
| authorships[2].affiliations[0].raw_affiliation_string | NASA Jet Propulsion Laboratory, California Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I1334627681 |
| authorships[2].institutions[0].ror | https://ror.org/027k65916 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I122411786, https://openalex.org/I1334627681, https://openalex.org/I4210124779 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Jet Propulsion Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Marc Sanchez Net |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | NASA Jet Propulsion Laboratory, California Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5088963415 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Tiago Vaquero |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1334627681 |
| authorships[3].affiliations[0].raw_affiliation_string | NASA Jet Propulsion Laboratory, California Institute of Technology |
| authorships[3].institutions[0].id | https://openalex.org/I1334627681 |
| authorships[3].institutions[0].ror | https://ror.org/027k65916 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I122411786, https://openalex.org/I1334627681, https://openalex.org/I4210124779 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Jet Propulsion Laboratory |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tiago Stegun Vaquero |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | NASA Jet Propulsion Laboratory, California Institute of Technology |
| authorships[4].author.id | https://openalex.org/A5042186658 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5509-1841 |
| authorships[4].author.display_name | Ali‐akbar Agha‐mohammadi |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Southern California |
| authorships[4].affiliations[1].raw_affiliation_string | Robotics: Science and Systems New York City, NY, USA, |
| authorships[4].institutions[0].id | https://openalex.org/I1174212 |
| authorships[4].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Southern California |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ali-akbar Agha-mohammadi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Southern California, Robotics: Science and Systems New York City, NY, USA, |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.15607/rss.2022.xviii.014 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | PropEM-L: Radio Propagation Environment Modeling and Learning for Communication-Aware Multi-Robot Exploration |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12042 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9721999764442444 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Satellite Communication Systems |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2350741829, https://openalex.org/W2122871747, https://openalex.org/W3114279067 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.15607/rss.2022.xviii.014 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.15607/rss.2022.xviii.014 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Robotics: Science and Systems XVIII |
| best_oa_location.landing_page_url | https://doi.org/10.15607/rss.2022.xviii.014 |
| primary_location.id | doi:10.15607/rss.2022.xviii.014 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.15607/rss.2022.xviii.014 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Robotics: Science and Systems XVIII |
| primary_location.landing_page_url | https://doi.org/10.15607/rss.2022.xviii.014 |
| publication_date | 2022-06-27 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3128443388, https://openalex.org/W2409793499, https://openalex.org/W2101319352, https://openalex.org/W2889850168, https://openalex.org/W2793581700, https://openalex.org/W3130513806, https://openalex.org/W3004418007, https://openalex.org/W2934397973, https://openalex.org/W2092603302, https://openalex.org/W2023292064, https://openalex.org/W3175926607, https://openalex.org/W3134638636, https://openalex.org/W3087978450, https://openalex.org/W3009345526, https://openalex.org/W2565010656, https://openalex.org/W2791626036, https://openalex.org/W3080178290, https://openalex.org/W3115965176, https://openalex.org/W1516796808, https://openalex.org/W2945573940, https://openalex.org/W2063596703, https://openalex.org/W2066005785, https://openalex.org/W4286581933, https://openalex.org/W3202617659, https://openalex.org/W6681565475, https://openalex.org/W6796601630, https://openalex.org/W2965030512, https://openalex.org/W6680696557, https://openalex.org/W2145417574, https://openalex.org/W3171134957, https://openalex.org/W2144752369, https://openalex.org/W2140929789, https://openalex.org/W4287262265, https://openalex.org/W2029315739 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 36, 55, 119, 123, 154 |
| abstract_inverted_index.3D | 61 |
| abstract_inverted_index.an | 65 |
| abstract_inverted_index.by | 13, 149 |
| abstract_inverted_index.in | 40, 79, 122 |
| abstract_inverted_index.of | 2, 27, 64, 72, 93, 96, 116 |
| abstract_inverted_index.on | 30, 35, 118 |
| abstract_inverted_index.or | 33 |
| abstract_inverted_index.to | 67, 81, 110, 151 |
| abstract_inverted_index.up | 150 |
| abstract_inverted_index.we | 47 |
| abstract_inverted_index.44% | 152 |
| abstract_inverted_index.and | 10, 52, 76, 103, 106, 129 |
| abstract_inverted_index.can | 107, 143 |
| abstract_inverted_index.for | 133 |
| abstract_inverted_index.new | 111 |
| abstract_inverted_index.the | 8, 25, 28, 91, 114, 134 |
| abstract_inverted_index.2021 | 135 |
| abstract_inverted_index.from | 7 |
| abstract_inverted_index.line | 71 |
| abstract_inverted_index.loss | 157 |
| abstract_inverted_index.maps | 38 |
| abstract_inverted_index.over | 153 |
| abstract_inverted_index.path | 156 |
| abstract_inverted_index.rely | 34 |
| abstract_inverted_index.team | 121 |
| abstract_inverted_index.that | 141 |
| abstract_inverted_index.this | 45 |
| abstract_inverted_index.with | 126 |
| abstract_inverted_index.DARPA | 136 |
| abstract_inverted_index.about | 70 |
| abstract_inverted_index.adapt | 108 |
| abstract_inverted_index.order | 80 |
| abstract_inverted_index.radio | 16 |
| abstract_inverted_index.sight | 73 |
| abstract_inverted_index.which | 23, 57 |
| abstract_inverted_index.work, | 46 |
| abstract_inverted_index.effect | 26 |
| abstract_inverted_index.ignore | 24 |
| abstract_inverted_index.model. | 158 |
| abstract_inverted_index.models | 95 |
| abstract_inverted_index.online | 109 |
| abstract_inverted_index.priori | 37 |
| abstract_inverted_index.radios | 75 |
| abstract_inverted_index.signal | 17, 31, 85, 97, 145 |
| abstract_inverted_index.suffer | 39 |
| abstract_inverted_index.between | 74 |
| abstract_inverted_index.enables | 20 |
| abstract_inverted_index.extract | 68 |
| abstract_inverted_index.improve | 144 |
| abstract_inverted_index.machine | 104 |
| abstract_inverted_index.offered | 12 |
| abstract_inverted_index.predict | 83 |
| abstract_inverted_index.present | 48 |
| abstract_inverted_index.unknown | 4 |
| abstract_inverted_index.Learning | 53 |
| abstract_inverted_index.Modeling | 51 |
| abstract_inverted_index.PropEM-L | 117, 142 |
| abstract_inverted_index.accuracy | 148 |
| abstract_inverted_index.approach | 89 |
| abstract_inverted_index.benefits | 6 |
| abstract_inverted_index.combines | 90 |
| abstract_inverted_index.complex, | 3 |
| abstract_inverted_index.findings | 139 |
| abstract_inverted_index.indicate | 140 |
| abstract_inverted_index.received | 84 |
| abstract_inverted_index.strength | 18, 86, 146 |
| abstract_inverted_index.unknown, | 41 |
| abstract_inverted_index.(RSS).Our | 87 |
| abstract_inverted_index.cave-like | 130 |
| abstract_inverted_index.framework | 56 |
| abstract_inverted_index.geometric | 62 |
| abstract_inverted_index.learning, | 105 |
| abstract_inverted_index.leverages | 58 |
| abstract_inverted_index.phenomena | 99 |
| abstract_inverted_index.real-time | 59 |
| abstract_inverted_index.six-robot | 120 |
| abstract_inverted_index.strengths | 92 |
| abstract_inverted_index.accurately | 82 |
| abstract_inverted_index.mine-like, | 128 |
| abstract_inverted_index.prediction | 19, 147 |
| abstract_inverted_index.well-known | 94 |
| abstract_inverted_index.(PropEM-L), | 54 |
| abstract_inverted_index.Environment | 50 |
| abstract_inverted_index.Multi-robot | 0 |
| abstract_inverted_index.Propagation | 49 |
| abstract_inverted_index.attenuating | 77 |
| abstract_inverted_index.constructed | 132 |
| abstract_inverted_index.cooperation | 11 |
| abstract_inverted_index.data-driven | 88 |
| abstract_inverted_index.demonstrate | 113 |
| abstract_inverted_index.environment | 29, 66, 125 |
| abstract_inverted_index.exploration | 1 |
| abstract_inverted_index.information | 69 |
| abstract_inverted_index.inter-robot | 14 |
| abstract_inverted_index.logdistance | 155 |
| abstract_inverted_index.performance | 115 |
| abstract_inverted_index.propagation | 32, 98 |
| abstract_inverted_index.reflection, | 101 |
| abstract_inverted_index.Subterranean | 137 |
| abstract_inverted_index.diffraction) | 102 |
| abstract_inverted_index.environments | 5 |
| abstract_inverted_index.subway-like, | 127 |
| abstract_inverted_index.Challenge.Our | 138 |
| abstract_inverted_index.collaboration | 9 |
| abstract_inverted_index.sensor-derived | 60 |
| abstract_inverted_index.(e.g.shadowing, | 100 |
| abstract_inverted_index.environments.In | 44 |
| abstract_inverted_index.environments.We | 112 |
| abstract_inverted_index.representations | 63 |
| abstract_inverted_index.walls/obstacles | 78 |
| abstract_inverted_index.characteristics, | 131 |
| abstract_inverted_index.(e.g.subterranean) | 43 |
| abstract_inverted_index.exploration.Models | 22 |
| abstract_inverted_index.communication-aware | 21 |
| abstract_inverted_index.communication.Accurate | 15 |
| abstract_inverted_index.communicationrestricted | 124 |
| abstract_inverted_index.communication-restricted | 42 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.9159413 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |