Proposed Clinical Indicators for Efficient Screening and Testing for COVID-19 Infection from Classification and Regression Trees (CART) Analysis Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1101/2020.05.11.20097980
Background: The introduction and rapid transmission of SARS CoV2 in the United States resulted in implementation of methods to assess, mitigate and contain the resulting COVID-19 disease based on limited knowledge. Screening for testing has been based on symptoms typically observed in inpatients, yet outpatient symptom complexes may differ. Methods: Classification and regression trees (CART) recursive partitioning created a decision tree classifying enrollees into laboratory-confirmed cases and non-cases. Demographic and symptom data from patients ages 18-87 years who were enrolled from March 29-April 26, 2020 were included. Presence or absence of SARSCoV2 was the target variable. Results: Of 736 tested, 55 were positive for SARS-CoV2. Cases significantly more often reported chills, loss of taste/smell, diarrhea, fever, nausea/vomiting and contact with a COVID-19 case, but less frequently reported shortness of breath and sore throat. A 7-terminal node tree with a sensitivity of 96% and specificity of 53%, and an AUC of 78% was developed. The positive predictive value for this tree was 14% while the negative predictive value was 99%. Almost half (44%) of the participants could be ruled out as likely non-cases without testing. Discussion: Among those referred for testing, negative responses to three questions could classify about half of tested persons with low risk for SARS-CoV2 and would save limited testing resources. These questions are: was the patient in contact with a COVID-19 case? Has the patient experienced 1) a loss of taste or smell; or 2) nausea or vomiting? The outpatient symptoms of COVID-19 appear to be broader than the well-known inpatient syndrome.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2020.05.11.20097980
- https://www.medrxiv.org/content/medrxiv/early/2020/05/14/2020.05.11.20097980.full.pdf
- OA Status
- green
- Cited By
- 6
- References
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3025367141
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3025367141Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2020.05.11.20097980Digital Object Identifier
- Title
-
Proposed Clinical Indicators for Efficient Screening and Testing for COVID-19 Infection from Classification and Regression Trees (CART) AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-14Full publication date if available
- Authors
-
Richard K. Zimmerman, Mary Patricia Nowalk, Todd Bear, Rachel Taber, Theresa M. Sax, Heather Eng, G.K. BalasubramaniList of authors in order
- Landing page
-
https://doi.org/10.1101/2020.05.11.20097980Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2020/05/14/2020.05.11.20097980.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2020/05/14/2020.05.11.20097980.full.pdfDirect OA link when available
- Concepts
-
Chills, Nausea, Cart, Medicine, Sore throat, Vomiting, Decision tree, Predictive value, Diarrhea, Internal medicine, Surgery, Machine learning, Computer science, Engineering, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2, 2020: 4Per-year citation counts (last 5 years)
- References (count)
-
4Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3025367141 |
|---|---|
| doi | https://doi.org/10.1101/2020.05.11.20097980 |
| ids.doi | https://doi.org/10.1101/2020.05.11.20097980 |
| ids.mag | 3025367141 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32511556 |
| ids.openalex | https://openalex.org/W3025367141 |
| fwci | 0.75429136 |
| type | preprint |
| title | Proposed Clinical Indicators for Efficient Screening and Testing for COVID-19 Infection from Classification and Regression Trees (CART) Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9866999983787537 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| topics[2].id | https://openalex.org/T12647 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9758999943733215 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2707 |
| topics[2].subfield.display_name | Complementary and alternative medicine |
| topics[2].display_name | Traditional Chinese Medicine Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778594517 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7826105356216431 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2260058 |
| concepts[0].display_name | Chills |
| concepts[1].id | https://openalex.org/C2780580376 |
| concepts[1].level | 2 |
| concepts[1].score | 0.780066728591919 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q186889 |
| concepts[1].display_name | Nausea |
| concepts[2].id | https://openalex.org/C2777275308 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7151849269866943 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q234668 |
| concepts[2].display_name | Cart |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6859342455863953 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C2777870961 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6665160655975342 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1292082 |
| concepts[4].display_name | Sore throat |
| concepts[5].id | https://openalex.org/C2780852908 |
| concepts[5].level | 2 |
| concepts[5].score | 0.642967939376831 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q127076 |
| concepts[5].display_name | Vomiting |
| concepts[6].id | https://openalex.org/C84525736 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5129989981651306 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[6].display_name | Decision tree |
| concepts[7].id | https://openalex.org/C3019719930 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4843102991580963 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3910099 |
| concepts[7].display_name | Predictive value |
| concepts[8].id | https://openalex.org/C2779802037 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43997058272361755 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q40878 |
| concepts[8].display_name | Diarrhea |
| concepts[9].id | https://openalex.org/C126322002 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38275817036628723 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[9].display_name | Internal medicine |
| concepts[10].id | https://openalex.org/C141071460 |
| concepts[10].level | 1 |
| concepts[10].score | 0.21219679713249207 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[10].display_name | Surgery |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1412334144115448 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C78519656 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[14].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/chills |
| keywords[0].score | 0.7826105356216431 |
| keywords[0].display_name | Chills |
| keywords[1].id | https://openalex.org/keywords/nausea |
| keywords[1].score | 0.780066728591919 |
| keywords[1].display_name | Nausea |
| keywords[2].id | https://openalex.org/keywords/cart |
| keywords[2].score | 0.7151849269866943 |
| keywords[2].display_name | Cart |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.6859342455863953 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/sore-throat |
| keywords[4].score | 0.6665160655975342 |
| keywords[4].display_name | Sore throat |
| keywords[5].id | https://openalex.org/keywords/vomiting |
| keywords[5].score | 0.642967939376831 |
| keywords[5].display_name | Vomiting |
| keywords[6].id | https://openalex.org/keywords/decision-tree |
| keywords[6].score | 0.5129989981651306 |
| keywords[6].display_name | Decision tree |
| keywords[7].id | https://openalex.org/keywords/predictive-value |
| keywords[7].score | 0.4843102991580963 |
| keywords[7].display_name | Predictive value |
| keywords[8].id | https://openalex.org/keywords/diarrhea |
| keywords[8].score | 0.43997058272361755 |
| keywords[8].display_name | Diarrhea |
| keywords[9].id | https://openalex.org/keywords/internal-medicine |
| keywords[9].score | 0.38275817036628723 |
| keywords[9].display_name | Internal medicine |
| keywords[10].id | https://openalex.org/keywords/surgery |
| keywords[10].score | 0.21219679713249207 |
| keywords[10].display_name | Surgery |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.1412334144115448 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1101/2020.05.11.20097980 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | other-oa |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2020/05/14/2020.05.11.20097980.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2020.05.11.20097980 |
| locations[1].id | pmid:32511556 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | medRxiv : the preprint server for health sciences |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32511556 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:7274237 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | medRxiv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7274237 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5022713628 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5941-6092 |
| authorships[0].author.display_name | Richard K. Zimmerman |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Pittsburgh School of Medicine, Department of Family Medicine, Pittsburgh PA USA |
| authorships[0].institutions[0].id | https://openalex.org/I170201317 |
| authorships[0].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Pittsburgh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Richard K Zimmerman |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | University of Pittsburgh School of Medicine, Department of Family Medicine, Pittsburgh PA USA |
| authorships[1].author.id | https://openalex.org/A5067426689 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1702-2690 |
| authorships[1].author.display_name | Mary Patricia Nowalk |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Pittsburgh School of Medicine, Department of Family Medicine, Pittsburgh PA USA |
| authorships[1].institutions[0].id | https://openalex.org/I170201317 |
| authorships[1].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Pittsburgh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mary Patricia Nowalk |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Pittsburgh School of Medicine, Department of Family Medicine, Pittsburgh PA USA |
| authorships[2].author.id | https://openalex.org/A5084488864 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5252-6926 |
| authorships[2].author.display_name | Todd Bear |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[2].affiliations[0].raw_affiliation_string | Graduate School of Public Health, Department of Behavioral and Community Health Sciences, Pittsburgh PA USA |
| authorships[2].institutions[0].id | https://openalex.org/I170201317 |
| authorships[2].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Pittsburgh |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Todd Bear |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Graduate School of Public Health, Department of Behavioral and Community Health Sciences, Pittsburgh PA USA |
| authorships[3].author.id | https://openalex.org/A5000740538 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Rachel Taber |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[3].affiliations[0].raw_affiliation_string | Graduate School of Public Health, Department of Behavioral and Community Health Sciences, Pittsburgh PA USA |
| authorships[3].institutions[0].id | https://openalex.org/I170201317 |
| authorships[3].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Pittsburgh |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rachel Taber |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Graduate School of Public Health, Department of Behavioral and Community Health Sciences, Pittsburgh PA USA |
| authorships[4].author.id | https://openalex.org/A5022232969 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Theresa M. Sax |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Epidemiology, Pittsburgh PA USA |
| authorships[4].institutions[0].id | https://openalex.org/I170201317 |
| authorships[4].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Pittsburgh |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Theresa M Sax |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Epidemiology, Pittsburgh PA USA |
| authorships[5].author.id | https://openalex.org/A5112150531 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Heather Eng |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Epidemiology, Pittsburgh PA USA |
| authorships[5].institutions[0].id | https://openalex.org/I170201317 |
| authorships[5].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Pittsburgh |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Heather Eng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Epidemiology, Pittsburgh PA USA |
| authorships[6].author.id | https://openalex.org/A5042787177 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7221-1825 |
| authorships[6].author.display_name | G.K. Balasubramani |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Epidemiology, Pittsburgh PA USA |
| authorships[6].institutions[0].id | https://openalex.org/I170201317 |
| authorships[6].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Pittsburgh |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Goundappa K Balasubramani |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Epidemiology, Pittsburgh PA USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2020/05/14/2020.05.11.20097980.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Proposed Clinical Indicators for Efficient Screening and Testing for COVID-19 Infection from Classification and Regression Trees (CART) Analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W3173606202, https://openalex.org/W3110381201, https://openalex.org/W2948807893, https://openalex.org/W2778153218, https://openalex.org/W1531601525, https://openalex.org/W4400093351, https://openalex.org/W2015453038, https://openalex.org/W3193909393, https://openalex.org/W2128002702 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/2020.05.11.20097980 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2020/05/14/2020.05.11.20097980.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2020.05.11.20097980 |
| primary_location.id | doi:10.1101/2020.05.11.20097980 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | other-oa |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2020/05/14/2020.05.11.20097980.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2020.05.11.20097980 |
| publication_date | 2020-05-14 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3017124582, https://openalex.org/W6843735874, https://openalex.org/W3085162807, https://openalex.org/W1594031697 |
| referenced_works_count | 4 |
| abstract_inverted_index.A | 133 |
| abstract_inverted_index.a | 58, 120, 138, 222, 230 |
| abstract_inverted_index.1) | 229 |
| abstract_inverted_index.2) | 237 |
| abstract_inverted_index.55 | 100 |
| abstract_inverted_index.Of | 97 |
| abstract_inverted_index.an | 147 |
| abstract_inverted_index.as | 179 |
| abstract_inverted_index.be | 176, 248 |
| abstract_inverted_index.in | 9, 14, 41, 219 |
| abstract_inverted_index.of | 6, 16, 90, 112, 128, 140, 144, 149, 172, 199, 232, 244 |
| abstract_inverted_index.on | 28, 37 |
| abstract_inverted_index.or | 88, 234, 236, 239 |
| abstract_inverted_index.to | 18, 192, 247 |
| abstract_inverted_index.14% | 161 |
| abstract_inverted_index.26, | 83 |
| abstract_inverted_index.736 | 98 |
| abstract_inverted_index.78% | 150 |
| abstract_inverted_index.96% | 141 |
| abstract_inverted_index.AUC | 148 |
| abstract_inverted_index.Has | 225 |
| abstract_inverted_index.The | 1, 153, 241 |
| abstract_inverted_index.and | 3, 21, 51, 66, 69, 117, 130, 142, 146, 207 |
| abstract_inverted_index.but | 123 |
| abstract_inverted_index.for | 32, 103, 157, 188, 205 |
| abstract_inverted_index.has | 34 |
| abstract_inverted_index.low | 203 |
| abstract_inverted_index.may | 47 |
| abstract_inverted_index.out | 178 |
| abstract_inverted_index.the | 10, 23, 93, 163, 173, 217, 226, 251 |
| abstract_inverted_index.was | 92, 151, 160, 167, 216 |
| abstract_inverted_index.who | 77 |
| abstract_inverted_index.yet | 43 |
| abstract_inverted_index.2020 | 84 |
| abstract_inverted_index.53%, | 145 |
| abstract_inverted_index.99%. | 168 |
| abstract_inverted_index.CoV2 | 8 |
| abstract_inverted_index.SARS | 7 |
| abstract_inverted_index.ages | 74 |
| abstract_inverted_index.are: | 215 |
| abstract_inverted_index.been | 35 |
| abstract_inverted_index.data | 71 |
| abstract_inverted_index.from | 72, 80 |
| abstract_inverted_index.half | 170, 198 |
| abstract_inverted_index.into | 63 |
| abstract_inverted_index.less | 124 |
| abstract_inverted_index.loss | 111, 231 |
| abstract_inverted_index.more | 107 |
| abstract_inverted_index.node | 135 |
| abstract_inverted_index.risk | 204 |
| abstract_inverted_index.save | 209 |
| abstract_inverted_index.sore | 131 |
| abstract_inverted_index.than | 250 |
| abstract_inverted_index.this | 158 |
| abstract_inverted_index.tree | 60, 136, 159 |
| abstract_inverted_index.were | 78, 85, 101 |
| abstract_inverted_index.with | 119, 137, 202, 221 |
| abstract_inverted_index.(44%) | 171 |
| abstract_inverted_index.18-87 | 75 |
| abstract_inverted_index.Among | 185 |
| abstract_inverted_index.Cases | 105 |
| abstract_inverted_index.March | 81 |
| abstract_inverted_index.These | 213 |
| abstract_inverted_index.about | 197 |
| abstract_inverted_index.based | 27, 36 |
| abstract_inverted_index.case, | 122 |
| abstract_inverted_index.case? | 224 |
| abstract_inverted_index.cases | 65 |
| abstract_inverted_index.could | 175, 195 |
| abstract_inverted_index.often | 108 |
| abstract_inverted_index.rapid | 4 |
| abstract_inverted_index.ruled | 177 |
| abstract_inverted_index.taste | 233 |
| abstract_inverted_index.those | 186 |
| abstract_inverted_index.three | 193 |
| abstract_inverted_index.trees | 53 |
| abstract_inverted_index.value | 156, 166 |
| abstract_inverted_index.while | 162 |
| abstract_inverted_index.would | 208 |
| abstract_inverted_index.years | 76 |
| abstract_inverted_index.(CART) | 54 |
| abstract_inverted_index.Almost | 169 |
| abstract_inverted_index.States | 12 |
| abstract_inverted_index.United | 11 |
| abstract_inverted_index.appear | 246 |
| abstract_inverted_index.breath | 129 |
| abstract_inverted_index.fever, | 115 |
| abstract_inverted_index.likely | 180 |
| abstract_inverted_index.nausea | 238 |
| abstract_inverted_index.smell; | 235 |
| abstract_inverted_index.target | 94 |
| abstract_inverted_index.tested | 200 |
| abstract_inverted_index.absence | 89 |
| abstract_inverted_index.assess, | 19 |
| abstract_inverted_index.broader | 249 |
| abstract_inverted_index.chills, | 110 |
| abstract_inverted_index.contact | 118, 220 |
| abstract_inverted_index.contain | 22 |
| abstract_inverted_index.created | 57 |
| abstract_inverted_index.differ. | 48 |
| abstract_inverted_index.disease | 26 |
| abstract_inverted_index.limited | 29, 210 |
| abstract_inverted_index.methods | 17 |
| abstract_inverted_index.patient | 218, 227 |
| abstract_inverted_index.persons | 201 |
| abstract_inverted_index.symptom | 45, 70 |
| abstract_inverted_index.tested, | 99 |
| abstract_inverted_index.testing | 33, 211 |
| abstract_inverted_index.throat. | 132 |
| abstract_inverted_index.without | 182 |
| abstract_inverted_index.29-April | 82 |
| abstract_inverted_index.COVID-19 | 25, 121, 223, 245 |
| abstract_inverted_index.Methods: | 49 |
| abstract_inverted_index.Presence | 87 |
| abstract_inverted_index.Results: | 96 |
| abstract_inverted_index.SARSCoV2 | 91 |
| abstract_inverted_index.classify | 196 |
| abstract_inverted_index.decision | 59 |
| abstract_inverted_index.enrolled | 79 |
| abstract_inverted_index.mitigate | 20 |
| abstract_inverted_index.negative | 164, 190 |
| abstract_inverted_index.observed | 40 |
| abstract_inverted_index.patients | 73 |
| abstract_inverted_index.positive | 102, 154 |
| abstract_inverted_index.referred | 187 |
| abstract_inverted_index.reported | 109, 126 |
| abstract_inverted_index.resulted | 13 |
| abstract_inverted_index.symptoms | 38, 243 |
| abstract_inverted_index.testing, | 189 |
| abstract_inverted_index.testing. | 183 |
| abstract_inverted_index.SARS-CoV2 | 206 |
| abstract_inverted_index.Screening | 31 |
| abstract_inverted_index.complexes | 46 |
| abstract_inverted_index.diarrhea, | 114 |
| abstract_inverted_index.enrollees | 62 |
| abstract_inverted_index.included. | 86 |
| abstract_inverted_index.inpatient | 253 |
| abstract_inverted_index.non-cases | 181 |
| abstract_inverted_index.questions | 194, 214 |
| abstract_inverted_index.recursive | 55 |
| abstract_inverted_index.responses | 191 |
| abstract_inverted_index.resulting | 24 |
| abstract_inverted_index.shortness | 127 |
| abstract_inverted_index.syndrome. | 254 |
| abstract_inverted_index.typically | 39 |
| abstract_inverted_index.variable. | 95 |
| abstract_inverted_index.vomiting? | 240 |
| abstract_inverted_index.7-terminal | 134 |
| abstract_inverted_index.SARS-CoV2. | 104 |
| abstract_inverted_index.developed. | 152 |
| abstract_inverted_index.frequently | 125 |
| abstract_inverted_index.knowledge. | 30 |
| abstract_inverted_index.non-cases. | 67 |
| abstract_inverted_index.outpatient | 44, 242 |
| abstract_inverted_index.predictive | 155, 165 |
| abstract_inverted_index.regression | 52 |
| abstract_inverted_index.resources. | 212 |
| abstract_inverted_index.well-known | 252 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.Demographic | 68 |
| abstract_inverted_index.Discussion: | 184 |
| abstract_inverted_index.classifying | 61 |
| abstract_inverted_index.experienced | 228 |
| abstract_inverted_index.inpatients, | 42 |
| abstract_inverted_index.sensitivity | 139 |
| abstract_inverted_index.specificity | 143 |
| abstract_inverted_index.introduction | 2 |
| abstract_inverted_index.participants | 174 |
| abstract_inverted_index.partitioning | 56 |
| abstract_inverted_index.taste/smell, | 113 |
| abstract_inverted_index.transmission | 5 |
| abstract_inverted_index.significantly | 106 |
| abstract_inverted_index.Classification | 50 |
| abstract_inverted_index.implementation | 15 |
| abstract_inverted_index.nausea/vomiting | 116 |
| abstract_inverted_index.laboratory-confirmed | 64 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 93 |
| corresponding_author_ids | https://openalex.org/A5022713628 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I170201317 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.72976078 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |