Protein Structure Accuracy Estimation using Geometry-Complete Perceptron Networks Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.8150859
Estimating the accuracy of protein structural models is a critical task in protein bioinformatics. The need for robust methods in the estimation of protein model accuracy (EMA) is prevalent in the field of protein structure prediction, where computationally-predicted structures need to be screened rapidly for the reliability of the positions predicted for each of their amino acid residues and their overall quality. Current methods proposed for EMA are either coupled tightly to existing protein structure prediction methods or evaluate protein structures without sufficiently leveraging the rich, geometric information available in such structures to guide accuracy estimation. In this work, we propose a geometric message passing neural network referred to as the geometry-complete perceptron network for protein structure EMA (GCPNet-EMA), where we demonstrate through rigorous computational benchmarks that GCPNet-EMA's accuracy estimations are 47% faster and more than 10% (6%) more correlated with ground-truth measures of per-residue (per-target) structural accuracy compared to baseline state-of-the-art methods for tertiary (multimer) structure EMA including AlphaFold 2. The source code and data for GCPNet-EMA are available on GitHub, and a public web server implementation is freely available.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.8150859
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4384457494
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4384457494Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.8150859Digital Object Identifier
- Title
-
Protein Structure Accuracy Estimation using Geometry-Complete Perceptron NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-21Full publication date if available
- Authors
-
Alex Morehead, Jianlin ChengList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.8150859Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.8150859Direct OA link when available
- Concepts
-
Geometry, Computer science, Estimation, Artificial intelligence, Perceptron, Pattern recognition (psychology), Algorithm, Artificial neural network, Mathematics, Engineering, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4384457494 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.8150859 |
| ids.doi | https://doi.org/10.5281/zenodo.8150859 |
| ids.openalex | https://openalex.org/W4384457494 |
| fwci | 1.44074168 |
| type | article |
| title | Protein Structure Accuracy Estimation using Geometry-Complete Perceptron Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12254 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9904000163078308 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Machine Learning in Bioinformatics |
| topics[1].id | https://openalex.org/T10044 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9771000146865845 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Protein Structure and Dynamics |
| topics[2].id | https://openalex.org/T10211 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9440000057220459 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Computational Drug Discovery Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2524010 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5759206414222717 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[0].display_name | Geometry |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5519329309463501 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C96250715 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4818902611732483 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[2].display_name | Estimation |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.46670934557914734 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C60908668 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4553251266479492 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q690207 |
| concepts[4].display_name | Perceptron |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3632173240184784 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3503679931163788 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.341025710105896 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2701794505119324 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.12952491641044617 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C201995342 |
| concepts[10].level | 1 |
| concepts[10].score | 0.06404247879981995 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[10].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/geometry |
| keywords[0].score | 0.5759206414222717 |
| keywords[0].display_name | Geometry |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5519329309463501 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/estimation |
| keywords[2].score | 0.4818902611732483 |
| keywords[2].display_name | Estimation |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.46670934557914734 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/perceptron |
| keywords[4].score | 0.4553251266479492 |
| keywords[4].display_name | Perceptron |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3632173240184784 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.3503679931163788 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.341025710105896 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.2701794505119324 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.12952491641044617 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/systems-engineering |
| keywords[10].score | 0.06404247879981995 |
| keywords[10].display_name | Systems engineering |
| language | en |
| locations[0].id | doi:10.5281/zenodo.8150859 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.8150859 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5072705391 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0586-6191 |
| authorships[0].author.display_name | Alex Morehead |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Missouri-Columbia |
| authorships[0].institutions[0].id | https://openalex.org/I76835614 |
| authorships[0].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Missouri |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alex Morehead |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Missouri-Columbia |
| authorships[1].author.id | https://openalex.org/A5044354277 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0305-2853 |
| authorships[1].author.display_name | Jianlin Cheng |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Missouri-Columbia |
| authorships[1].institutions[0].id | https://openalex.org/I76835614 |
| authorships[1].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Missouri |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jianlin Cheng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Missouri-Columbia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.8150859 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Protein Structure Accuracy Estimation using Geometry-Complete Perceptron Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12254 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9904000163078308 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Machine Learning in Bioinformatics |
| related_works | https://openalex.org/W3106494386, https://openalex.org/W2113970358, https://openalex.org/W2405544437, https://openalex.org/W4221160179, https://openalex.org/W1902766772, https://openalex.org/W3128183380, https://openalex.org/W4220672327, https://openalex.org/W2338394561, https://openalex.org/W2078674814, https://openalex.org/W2380307146 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.8150859 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.8150859 |
| primary_location.id | doi:10.5281/zenodo.8150859 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.8150859 |
| publication_date | 2024-02-21 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 101, 173 |
| abstract_inverted_index.2. | 160 |
| abstract_inverted_index.In | 96 |
| abstract_inverted_index.as | 109 |
| abstract_inverted_index.be | 41 |
| abstract_inverted_index.in | 11, 19, 29, 89 |
| abstract_inverted_index.is | 7, 27, 178 |
| abstract_inverted_index.of | 3, 22, 32, 47, 53, 143 |
| abstract_inverted_index.on | 170 |
| abstract_inverted_index.or | 77 |
| abstract_inverted_index.to | 40, 71, 92, 108, 149 |
| abstract_inverted_index.we | 99, 120 |
| abstract_inverted_index.10% | 136 |
| abstract_inverted_index.47% | 131 |
| abstract_inverted_index.EMA | 66, 117, 157 |
| abstract_inverted_index.The | 14, 161 |
| abstract_inverted_index.and | 58, 133, 164, 172 |
| abstract_inverted_index.are | 67, 130, 168 |
| abstract_inverted_index.for | 16, 44, 51, 65, 114, 153, 166 |
| abstract_inverted_index.the | 1, 20, 30, 45, 48, 84, 110 |
| abstract_inverted_index.web | 175 |
| abstract_inverted_index.(6%) | 137 |
| abstract_inverted_index.acid | 56 |
| abstract_inverted_index.code | 163 |
| abstract_inverted_index.data | 165 |
| abstract_inverted_index.each | 52 |
| abstract_inverted_index.more | 134, 138 |
| abstract_inverted_index.need | 15, 39 |
| abstract_inverted_index.such | 90 |
| abstract_inverted_index.task | 10 |
| abstract_inverted_index.than | 135 |
| abstract_inverted_index.that | 126 |
| abstract_inverted_index.this | 97 |
| abstract_inverted_index.with | 140 |
| abstract_inverted_index.(EMA) | 26 |
| abstract_inverted_index.amino | 55 |
| abstract_inverted_index.field | 31 |
| abstract_inverted_index.guide | 93 |
| abstract_inverted_index.model | 24 |
| abstract_inverted_index.rich, | 85 |
| abstract_inverted_index.their | 54, 59 |
| abstract_inverted_index.where | 36, 119 |
| abstract_inverted_index.work, | 98 |
| abstract_inverted_index.either | 68 |
| abstract_inverted_index.faster | 132 |
| abstract_inverted_index.freely | 179 |
| abstract_inverted_index.models | 6 |
| abstract_inverted_index.neural | 105 |
| abstract_inverted_index.public | 174 |
| abstract_inverted_index.robust | 17 |
| abstract_inverted_index.server | 176 |
| abstract_inverted_index.source | 162 |
| abstract_inverted_index.Current | 62 |
| abstract_inverted_index.GitHub, | 171 |
| abstract_inverted_index.coupled | 69 |
| abstract_inverted_index.message | 103 |
| abstract_inverted_index.methods | 18, 63, 76, 152 |
| abstract_inverted_index.network | 106, 113 |
| abstract_inverted_index.overall | 60 |
| abstract_inverted_index.passing | 104 |
| abstract_inverted_index.propose | 100 |
| abstract_inverted_index.protein | 4, 12, 23, 33, 73, 79, 115 |
| abstract_inverted_index.rapidly | 43 |
| abstract_inverted_index.through | 122 |
| abstract_inverted_index.tightly | 70 |
| abstract_inverted_index.without | 81 |
| abstract_inverted_index.accuracy | 2, 25, 94, 128, 147 |
| abstract_inverted_index.baseline | 150 |
| abstract_inverted_index.compared | 148 |
| abstract_inverted_index.critical | 9 |
| abstract_inverted_index.evaluate | 78 |
| abstract_inverted_index.existing | 72 |
| abstract_inverted_index.measures | 142 |
| abstract_inverted_index.proposed | 64 |
| abstract_inverted_index.quality. | 61 |
| abstract_inverted_index.referred | 107 |
| abstract_inverted_index.residues | 57 |
| abstract_inverted_index.rigorous | 123 |
| abstract_inverted_index.screened | 42 |
| abstract_inverted_index.tertiary | 154 |
| abstract_inverted_index.AlphaFold | 159 |
| abstract_inverted_index.available | 88, 169 |
| abstract_inverted_index.geometric | 86, 102 |
| abstract_inverted_index.including | 158 |
| abstract_inverted_index.positions | 49 |
| abstract_inverted_index.predicted | 50 |
| abstract_inverted_index.prevalent | 28 |
| abstract_inverted_index.structure | 34, 74, 116, 156 |
| abstract_inverted_index.(multimer) | 155 |
| abstract_inverted_index.Estimating | 0 |
| abstract_inverted_index.GCPNet-EMA | 167 |
| abstract_inverted_index.available. | 180 |
| abstract_inverted_index.benchmarks | 125 |
| abstract_inverted_index.correlated | 139 |
| abstract_inverted_index.estimation | 21 |
| abstract_inverted_index.leveraging | 83 |
| abstract_inverted_index.perceptron | 112 |
| abstract_inverted_index.prediction | 75 |
| abstract_inverted_index.structural | 5, 146 |
| abstract_inverted_index.structures | 38, 80, 91 |
| abstract_inverted_index.demonstrate | 121 |
| abstract_inverted_index.estimation. | 95 |
| abstract_inverted_index.estimations | 129 |
| abstract_inverted_index.information | 87 |
| abstract_inverted_index.per-residue | 144 |
| abstract_inverted_index.prediction, | 35 |
| abstract_inverted_index.reliability | 46 |
| abstract_inverted_index.(per-target) | 145 |
| abstract_inverted_index.GCPNet-EMA's | 127 |
| abstract_inverted_index.ground-truth | 141 |
| abstract_inverted_index.sufficiently | 82 |
| abstract_inverted_index.(GCPNet-EMA), | 118 |
| abstract_inverted_index.computational | 124 |
| abstract_inverted_index.implementation | 177 |
| abstract_inverted_index.bioinformatics. | 13 |
| abstract_inverted_index.state-of-the-art | 151 |
| abstract_inverted_index.geometry-complete | 111 |
| abstract_inverted_index.computationally-predicted | 37 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.72372563 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |