Protein structure accuracy estimation using geometry‐complete perceptron networks Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1002/pro.4932
Estimating the accuracy of protein structural models is a critical task in protein bioinformatics. The need for robust methods in the estimation of protein model accuracy (EMA) is prevalent in the field of protein structure prediction, where computationally‐predicted structures need to be screened rapidly for the reliability of the positions predicted for each of their amino acid residues and their overall quality. Current methods proposed for EMA are either coupled tightly to existing protein structure prediction methods or evaluate protein structures without sufficiently leveraging the rich, geometric information available in such structures to guide accuracy estimation. In this work, we propose a geometric message passing neural network referred to as the geometry‐complete perceptron network for protein structure EMA (GCPNet‐EMA), where we demonstrate through rigorous computational benchmarks that GCPNet‐EMA's accuracy estimations are 47% faster and more than 10% (6%) more correlated with ground‐truth measures of per‐residue (per‐target) structural accuracy compared to baseline state‐of‐the‐art methods for tertiary (multimer) structure EMA including AlphaFold 2. The source code and data for GCPNet‐EMA are available on GitHub, and a public web server implementation is freely available.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/pro.4932
- OA Status
- green
- Cited By
- 8
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392004278
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392004278Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/pro.4932Digital Object Identifier
- Title
-
Protein structure accuracy estimation using geometry‐complete perceptron networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-21Full publication date if available
- Authors
-
Alex Morehead, Jian Liu, Jianlin ChengList of authors in order
- Landing page
-
https://doi.org/10.1002/pro.4932Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://pmc.ncbi.nlm.nih.gov/articles/PMC10880424/pdf/PRO-33-e4932.pdfDirect OA link when available
- Concepts
-
Protein structure, Protein structure prediction, Computer science, Estimation, Geometry, Algorithm, Artificial intelligence, Pattern recognition (psychology), Physics, Mathematics, Nuclear magnetic resonance, Engineering, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392004278 |
|---|---|
| doi | https://doi.org/10.1002/pro.4932 |
| ids.doi | https://doi.org/10.1002/pro.4932 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38380738 |
| ids.openalex | https://openalex.org/W4392004278 |
| fwci | 3.8419778 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D015203 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Reproducibility of Results |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D016571 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Neural Networks, Computer |
| mesh[2].qualifier_ui | Q000737 |
| mesh[2].descriptor_ui | D011506 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | chemistry |
| mesh[2].descriptor_name | Proteins |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D012984 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Software |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000596 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Amino Acids |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D019295 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Computational Biology |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D015203 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Reproducibility of Results |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D016571 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Neural Networks, Computer |
| mesh[8].qualifier_ui | Q000737 |
| mesh[8].descriptor_ui | D011506 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | chemistry |
| mesh[8].descriptor_name | Proteins |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D012984 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Software |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000596 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Amino Acids |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D019295 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Computational Biology |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D015203 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Reproducibility of Results |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D016571 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Neural Networks, Computer |
| mesh[14].qualifier_ui | Q000737 |
| mesh[14].descriptor_ui | D011506 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | chemistry |
| mesh[14].descriptor_name | Proteins |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D012984 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Software |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000596 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Amino Acids |
| mesh[17].qualifier_ui | Q000379 |
| mesh[17].descriptor_ui | D019295 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | methods |
| mesh[17].descriptor_name | Computational Biology |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D015203 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Reproducibility of Results |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D016571 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Neural Networks, Computer |
| mesh[20].qualifier_ui | Q000737 |
| mesh[20].descriptor_ui | D011506 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | chemistry |
| mesh[20].descriptor_name | Proteins |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D012984 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Software |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000596 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Amino Acids |
| mesh[23].qualifier_ui | Q000379 |
| mesh[23].descriptor_ui | D019295 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | methods |
| mesh[23].descriptor_name | Computational Biology |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D015203 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Reproducibility of Results |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D016571 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Neural Networks, Computer |
| mesh[26].qualifier_ui | Q000737 |
| mesh[26].descriptor_ui | D011506 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | chemistry |
| mesh[26].descriptor_name | Proteins |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D012984 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Software |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D000596 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Amino Acids |
| mesh[29].qualifier_ui | Q000379 |
| mesh[29].descriptor_ui | D019295 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | methods |
| mesh[29].descriptor_name | Computational Biology |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D015203 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Reproducibility of Results |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D016571 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Neural Networks, Computer |
| mesh[32].qualifier_ui | Q000737 |
| mesh[32].descriptor_ui | D011506 |
| mesh[32].is_major_topic | True |
| mesh[32].qualifier_name | chemistry |
| mesh[32].descriptor_name | Proteins |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D012984 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Software |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D000596 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Amino Acids |
| mesh[35].qualifier_ui | Q000379 |
| mesh[35].descriptor_ui | D019295 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | methods |
| mesh[35].descriptor_name | Computational Biology |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D015203 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Reproducibility of Results |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D016571 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Neural Networks, Computer |
| mesh[38].qualifier_ui | Q000737 |
| mesh[38].descriptor_ui | D011506 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | chemistry |
| mesh[38].descriptor_name | Proteins |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D012984 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Software |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D000596 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Amino Acids |
| mesh[41].qualifier_ui | Q000379 |
| mesh[41].descriptor_ui | D019295 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | methods |
| mesh[41].descriptor_name | Computational Biology |
| type | article |
| title | Protein structure accuracy estimation using geometry‐complete perceptron networks |
| awards[0].id | https://openalex.org/G3540221635 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | R01GM093123 |
| awards[0].funder_display_name | National Institutes of Health |
| awards[1].id | https://openalex.org/G2886798821 |
| awards[1].funder_id | https://openalex.org/F4320332161 |
| awards[1].display_name | |
| awards[1].funder_award_id | R01GM146340 |
| awards[1].funder_display_name | National Institutes of Health |
| awards[2].id | https://openalex.org/G1059597537 |
| awards[2].funder_id | https://openalex.org/F4320306076 |
| awards[2].display_name | |
| awards[2].funder_award_id | DBI1759934 |
| awards[2].funder_display_name | National Science Foundation |
| awards[3].id | https://openalex.org/G5644518174 |
| awards[3].funder_id | https://openalex.org/F4320306076 |
| awards[3].display_name | |
| awards[3].funder_award_id | IIS1763246 |
| awards[3].funder_display_name | National Science Foundation |
| awards[4].id | https://openalex.org/G8520241370 |
| awards[4].funder_id | https://openalex.org/F4320306076 |
| awards[4].display_name | |
| awards[4].funder_award_id | DBI2308699 |
| awards[4].funder_display_name | National Science Foundation |
| awards[5].id | https://openalex.org/G8677950012 |
| awards[5].funder_id | https://openalex.org/F4320306084 |
| awards[5].display_name | |
| awards[5].funder_award_id | DE‐SC0020400 |
| awards[5].funder_display_name | U.S. Department of Energy |
| awards[6].id | https://openalex.org/G6194686730 |
| awards[6].funder_id | https://openalex.org/F4320306084 |
| awards[6].display_name | |
| awards[6].funder_award_id | DE‐SC0021303 |
| awards[6].funder_display_name | U.S. Department of Energy |
| awards[7].id | https://openalex.org/G7335089564 |
| awards[7].funder_id | https://openalex.org/F4320306084 |
| awards[7].display_name | |
| awards[7].funder_award_id | DE‐AR0001213 |
| awards[7].funder_display_name | U.S. Department of Energy |
| biblio.issue | 3 |
| biblio.volume | 33 |
| biblio.last_page | e4932 |
| biblio.first_page | e4932 |
| topics[0].id | https://openalex.org/T10044 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Protein Structure and Dynamics |
| topics[1].id | https://openalex.org/T12254 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Machine Learning in Bioinformatics |
| topics[2].id | https://openalex.org/T10211 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9969000220298767 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Computational Drug Discovery Methods |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320306084 |
| funders[1].ror | https://ror.org/01bj3aw27 |
| funders[1].display_name | U.S. Department of Energy |
| funders[2].id | https://openalex.org/F4320332161 |
| funders[2].ror | https://ror.org/01cwqze88 |
| funders[2].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list.value | 4070 |
| apc_list.currency | USD |
| apc_list.value_usd | 4070 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C47701112 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5158180594444275 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q735188 |
| concepts[0].display_name | Protein structure |
| concepts[1].id | https://openalex.org/C18051474 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5037192702293396 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q899656 |
| concepts[1].display_name | Protein structure prediction |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4967573285102844 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C96250715 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46413156390190125 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[3].display_name | Estimation |
| concepts[4].id | https://openalex.org/C2524010 |
| concepts[4].level | 1 |
| concepts[4].score | 0.45376718044281006 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[4].display_name | Geometry |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.39282965660095215 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3804898262023926 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.36943569779396057 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.26234304904937744 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.25962963700294495 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C46141821 |
| concepts[10].level | 1 |
| concepts[10].score | 0.11203974485397339 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q209402 |
| concepts[10].display_name | Nuclear magnetic resonance |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09973597526550293 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C201995342 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[12].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/protein-structure |
| keywords[0].score | 0.5158180594444275 |
| keywords[0].display_name | Protein structure |
| keywords[1].id | https://openalex.org/keywords/protein-structure-prediction |
| keywords[1].score | 0.5037192702293396 |
| keywords[1].display_name | Protein structure prediction |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4967573285102844 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/estimation |
| keywords[3].score | 0.46413156390190125 |
| keywords[3].display_name | Estimation |
| keywords[4].id | https://openalex.org/keywords/geometry |
| keywords[4].score | 0.45376718044281006 |
| keywords[4].display_name | Geometry |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.39282965660095215 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3804898262023926 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.36943569779396057 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.26234304904937744 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.25962963700294495 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/nuclear-magnetic-resonance |
| keywords[10].score | 0.11203974485397339 |
| keywords[10].display_name | Nuclear magnetic resonance |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.09973597526550293 |
| keywords[11].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1002/pro.4932 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S156919612 |
| locations[0].source.issn | 0961-8368, 1469-896X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0961-8368 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Protein Science |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Protein Science |
| locations[0].landing_page_url | https://doi.org/10.1002/pro.4932 |
| locations[1].id | pmid:38380738 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Protein science : a publication of the Protein Society |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38380738 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10880424 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10880424/pdf/PRO-33-e4932.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Protein Sci |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10880424 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5072705391 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0586-6191 |
| authorships[0].author.display_name | Alex Morehead |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA |
| authorships[0].institutions[0].id | https://openalex.org/I76835614 |
| authorships[0].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Missouri |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alex Morehead |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA |
| authorships[1].author.id | https://openalex.org/A5027956425 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7570-8690 |
| authorships[1].author.display_name | Jian Liu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA |
| authorships[1].institutions[0].id | https://openalex.org/I76835614 |
| authorships[1].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Missouri |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jian Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA |
| authorships[2].author.id | https://openalex.org/A5044354277 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0305-2853 |
| authorships[2].author.display_name | Jianlin Cheng |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA |
| authorships[2].institutions[0].id | https://openalex.org/I76835614 |
| authorships[2].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Missouri |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jianlin Cheng |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10880424/pdf/PRO-33-e4932.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Protein structure accuracy estimation using geometry‐complete perceptron networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10044 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Protein Structure and Dynamics |
| related_works | https://openalex.org/W2946599741, https://openalex.org/W2593264178, https://openalex.org/W3171039768, https://openalex.org/W2136856901, https://openalex.org/W2368468053, https://openalex.org/W2058542300, https://openalex.org/W2043066834, https://openalex.org/W1564749278, https://openalex.org/W2294851134, https://openalex.org/W3215498386 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:10880424 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10880424/pdf/PRO-33-e4932.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Protein Sci |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10880424 |
| primary_location.id | doi:10.1002/pro.4932 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S156919612 |
| primary_location.source.issn | 0961-8368, 1469-896X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0961-8368 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Protein Science |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Protein Science |
| primary_location.landing_page_url | https://doi.org/10.1002/pro.4932 |
| publication_date | 2024-02-21 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4308463927, https://openalex.org/W4210805759, https://openalex.org/W2097632784, https://openalex.org/W3005407385, https://openalex.org/W2514534732, https://openalex.org/W4315928370, https://openalex.org/W4382631247, https://openalex.org/W2953524386, https://openalex.org/W2014050554, https://openalex.org/W4380577696, https://openalex.org/W3132153121, https://openalex.org/W3177828909, https://openalex.org/W3199799076, https://openalex.org/W3195593976, https://openalex.org/W4327550249, https://openalex.org/W4386525930, https://openalex.org/W4388571183, https://openalex.org/W4360762483, https://openalex.org/W3027442799, https://openalex.org/W2140673705, https://openalex.org/W3157447243, https://openalex.org/W2594725344, https://openalex.org/W4385075189, https://openalex.org/W3171848268, https://openalex.org/W2060238374, https://openalex.org/W2139257751, https://openalex.org/W2157938277, https://openalex.org/W2287165934, https://openalex.org/W3211795435, https://openalex.org/W1965517743, https://openalex.org/W2997234557, https://openalex.org/W4392004278, https://openalex.org/W4392391018, https://openalex.org/W3107123517 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 9, 102, 174 |
| abstract_inverted_index.2. | 161 |
| abstract_inverted_index.In | 97 |
| abstract_inverted_index.as | 110 |
| abstract_inverted_index.be | 42 |
| abstract_inverted_index.in | 12, 20, 30, 90 |
| abstract_inverted_index.is | 8, 28, 179 |
| abstract_inverted_index.of | 4, 23, 33, 48, 54, 144 |
| abstract_inverted_index.on | 171 |
| abstract_inverted_index.or | 78 |
| abstract_inverted_index.to | 41, 72, 93, 109, 150 |
| abstract_inverted_index.we | 100, 121 |
| abstract_inverted_index.10% | 137 |
| abstract_inverted_index.47% | 132 |
| abstract_inverted_index.EMA | 67, 118, 158 |
| abstract_inverted_index.The | 15, 162 |
| abstract_inverted_index.and | 59, 134, 165, 173 |
| abstract_inverted_index.are | 68, 131, 169 |
| abstract_inverted_index.for | 17, 45, 52, 66, 115, 154, 167 |
| abstract_inverted_index.the | 2, 21, 31, 46, 49, 85, 111 |
| abstract_inverted_index.web | 176 |
| abstract_inverted_index.(6%) | 138 |
| abstract_inverted_index.acid | 57 |
| abstract_inverted_index.code | 164 |
| abstract_inverted_index.data | 166 |
| abstract_inverted_index.each | 53 |
| abstract_inverted_index.more | 135, 139 |
| abstract_inverted_index.need | 16, 40 |
| abstract_inverted_index.such | 91 |
| abstract_inverted_index.task | 11 |
| abstract_inverted_index.than | 136 |
| abstract_inverted_index.that | 127 |
| abstract_inverted_index.this | 98 |
| abstract_inverted_index.with | 141 |
| abstract_inverted_index.(EMA) | 27 |
| abstract_inverted_index.amino | 56 |
| abstract_inverted_index.field | 32 |
| abstract_inverted_index.guide | 94 |
| abstract_inverted_index.model | 25 |
| abstract_inverted_index.rich, | 86 |
| abstract_inverted_index.their | 55, 60 |
| abstract_inverted_index.where | 37, 120 |
| abstract_inverted_index.work, | 99 |
| abstract_inverted_index.either | 69 |
| abstract_inverted_index.faster | 133 |
| abstract_inverted_index.freely | 180 |
| abstract_inverted_index.models | 7 |
| abstract_inverted_index.neural | 106 |
| abstract_inverted_index.public | 175 |
| abstract_inverted_index.robust | 18 |
| abstract_inverted_index.server | 177 |
| abstract_inverted_index.source | 163 |
| abstract_inverted_index.Current | 63 |
| abstract_inverted_index.GitHub, | 172 |
| abstract_inverted_index.coupled | 70 |
| abstract_inverted_index.message | 104 |
| abstract_inverted_index.methods | 19, 64, 77, 153 |
| abstract_inverted_index.network | 107, 114 |
| abstract_inverted_index.overall | 61 |
| abstract_inverted_index.passing | 105 |
| abstract_inverted_index.propose | 101 |
| abstract_inverted_index.protein | 5, 13, 24, 34, 74, 80, 116 |
| abstract_inverted_index.rapidly | 44 |
| abstract_inverted_index.through | 123 |
| abstract_inverted_index.tightly | 71 |
| abstract_inverted_index.without | 82 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accuracy | 3, 26, 95, 129, 148 |
| abstract_inverted_index.baseline | 151 |
| abstract_inverted_index.compared | 149 |
| abstract_inverted_index.critical | 10 |
| abstract_inverted_index.evaluate | 79 |
| abstract_inverted_index.existing | 73 |
| abstract_inverted_index.measures | 143 |
| abstract_inverted_index.proposed | 65 |
| abstract_inverted_index.quality. | 62 |
| abstract_inverted_index.referred | 108 |
| abstract_inverted_index.residues | 58 |
| abstract_inverted_index.rigorous | 124 |
| abstract_inverted_index.screened | 43 |
| abstract_inverted_index.tertiary | 155 |
| abstract_inverted_index.AlphaFold | 160 |
| abstract_inverted_index.available | 89, 170 |
| abstract_inverted_index.geometric | 87, 103 |
| abstract_inverted_index.including | 159 |
| abstract_inverted_index.positions | 50 |
| abstract_inverted_index.predicted | 51 |
| abstract_inverted_index.prevalent | 29 |
| abstract_inverted_index.structure | 35, 75, 117, 157 |
| abstract_inverted_index.(multimer) | 156 |
| abstract_inverted_index.Estimating | 1 |
| abstract_inverted_index.available. | 181 |
| abstract_inverted_index.benchmarks | 126 |
| abstract_inverted_index.correlated | 140 |
| abstract_inverted_index.estimation | 22 |
| abstract_inverted_index.leveraging | 84 |
| abstract_inverted_index.perceptron | 113 |
| abstract_inverted_index.prediction | 76 |
| abstract_inverted_index.structural | 6, 147 |
| abstract_inverted_index.structures | 39, 81, 92 |
| abstract_inverted_index.demonstrate | 122 |
| abstract_inverted_index.estimation. | 96 |
| abstract_inverted_index.estimations | 130 |
| abstract_inverted_index.information | 88 |
| abstract_inverted_index.prediction, | 36 |
| abstract_inverted_index.reliability | 47 |
| abstract_inverted_index.GCPNet‐EMA | 168 |
| abstract_inverted_index.sufficiently | 83 |
| abstract_inverted_index.computational | 125 |
| abstract_inverted_index.per‐residue | 145 |
| abstract_inverted_index.(per‐target) | 146 |
| abstract_inverted_index.GCPNet‐EMA's | 128 |
| abstract_inverted_index.ground‐truth | 142 |
| abstract_inverted_index.implementation | 178 |
| abstract_inverted_index.(GCPNet‐EMA), | 119 |
| abstract_inverted_index.bioinformatics. | 14 |
| abstract_inverted_index.geometry‐complete | 112 |
| abstract_inverted_index.state‐of‐the‐art | 152 |
| abstract_inverted_index.computationally‐predicted | 38 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5072705391, https://openalex.org/A5044354277 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I76835614 |
| citation_normalized_percentile.value | 0.89140305 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |