Protein‐Ligand Structure and Affinity Prediction in CASP16 Using a Geometric Deep Learning Ensemble and Flow Matching
Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/prot.26827
Predicting the structure of ligands bound to proteins is a foundational problem in modern biotechnology and drug discovery, yet little is known about how to combine the predictions of protein‐ligand structure (poses) produced by the latest deep learning methods to identify the best poses and how to accurately estimate the binding affinity between a protein target and a list of ligand candidates. Further, a blind benchmarking and assessment of protein‐ligand structure and binding affinity prediction is necessary to ensure it generalizes well to new settings. Towards this end, we introduce MULTICOM_ ligand, a deep learning‐based protein‐ligand structure and binding affinity prediction ensemble featuring structural consensus ranking for unsupervised pose ranking and a new deep generative flow matching model for joint structure and binding affinity prediction. Notably, MULTICOM_ ligand ranked among the top‐5 ligand prediction methods in both protein‐ligand structure prediction and binding affinity prediction in the 16th Critical Assessment of Techniques for Structure Prediction (CASP16), demonstrating its efficacy and utility for real‐world drug discovery efforts. The source code for MULTI COM_ ligand is freely available on GitHub.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/prot.26827
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/prot.26827
- OA Status
- bronze
- Cited By
- 2
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409269934
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409269934Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/prot.26827Digital Object Identifier
- Title
-
Protein‐Ligand Structure and Affinity Prediction in
CASP16 Using a Geometric Deep Learning Ensemble and Flow MatchingWork title - Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-08Full publication date if available
- Authors
-
Alex Morehead, Jian Liu, Pawan Neupane, Nabin Giri, Jianlin ChengList of authors in order
- Landing page
-
https://doi.org/10.1002/prot.26827Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/prot.26827Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/prot.26827Direct OA link when available
- Concepts
-
Ligand (biochemistry), Drug discovery, Computer science, Artificial intelligence, Ranking (information retrieval), Protein structure prediction, Protein ligand, Matching (statistics), Computational biology, Machine learning, Ligand efficiency, Protein structure, Chemistry, Mathematics, Biology, Biochemistry, Statistics, ReceptorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409269934 |
|---|---|
| doi | https://doi.org/10.1002/prot.26827 |
| ids.doi | https://doi.org/10.1002/prot.26827 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40195868 |
| ids.openalex | https://openalex.org/W4409269934 |
| fwci | 10.03679086 |
| type | article |
| title | Protein‐Ligand Structure and Affinity Prediction in |
| awards[0].id | https://openalex.org/G8520241370 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | DBI2308699 |
| awards[0].funder_display_name | National Science Foundation |
| awards[1].id | https://openalex.org/G3540221635 |
| awards[1].funder_id | https://openalex.org/F4320332161 |
| awards[1].display_name | |
| awards[1].funder_award_id | R01GM093123 |
| awards[1].funder_display_name | National Institutes of Health |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T10044 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Protein Structure and Dynamics |
| topics[2].id | https://openalex.org/T10932 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9671000242233276 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Microbial Metabolic Engineering and Bioproduction |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320332161 |
| funders[1].ror | https://ror.org/01cwqze88 |
| funders[1].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116569031 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6832541823387146 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q899107 |
| concepts[0].display_name | Ligand (biochemistry) |
| concepts[1].id | https://openalex.org/C74187038 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5611466765403748 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1418791 |
| concepts[1].display_name | Drug discovery |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5524076819419861 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5511347055435181 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C189430467 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5217317342758179 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[4].display_name | Ranking (information retrieval) |
| concepts[5].id | https://openalex.org/C18051474 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5161274671554565 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q899656 |
| concepts[5].display_name | Protein structure prediction |
| concepts[6].id | https://openalex.org/C109095088 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48006996512413025 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q899107 |
| concepts[6].display_name | Protein ligand |
| concepts[7].id | https://openalex.org/C165064840 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4423864185810089 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[7].display_name | Matching (statistics) |
| concepts[8].id | https://openalex.org/C70721500 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4359495937824249 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[8].display_name | Computational biology |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.43313270807266235 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C204171352 |
| concepts[10].level | 4 |
| concepts[10].score | 0.42383596301078796 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6545861 |
| concepts[10].display_name | Ligand efficiency |
| concepts[11].id | https://openalex.org/C47701112 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3988751173019409 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q735188 |
| concepts[11].display_name | Protein structure |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3263509273529053 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.19724854826927185 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1552109718322754 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11697635054588318 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C170493617 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q208467 |
| concepts[17].display_name | Receptor |
| keywords[0].id | https://openalex.org/keywords/ligand |
| keywords[0].score | 0.6832541823387146 |
| keywords[0].display_name | Ligand (biochemistry) |
| keywords[1].id | https://openalex.org/keywords/drug-discovery |
| keywords[1].score | 0.5611466765403748 |
| keywords[1].display_name | Drug discovery |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5524076819419861 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5511347055435181 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/ranking |
| keywords[4].score | 0.5217317342758179 |
| keywords[4].display_name | Ranking (information retrieval) |
| keywords[5].id | https://openalex.org/keywords/protein-structure-prediction |
| keywords[5].score | 0.5161274671554565 |
| keywords[5].display_name | Protein structure prediction |
| keywords[6].id | https://openalex.org/keywords/protein-ligand |
| keywords[6].score | 0.48006996512413025 |
| keywords[6].display_name | Protein ligand |
| keywords[7].id | https://openalex.org/keywords/matching |
| keywords[7].score | 0.4423864185810089 |
| keywords[7].display_name | Matching (statistics) |
| keywords[8].id | https://openalex.org/keywords/computational-biology |
| keywords[8].score | 0.4359495937824249 |
| keywords[8].display_name | Computational biology |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.43313270807266235 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/ligand-efficiency |
| keywords[10].score | 0.42383596301078796 |
| keywords[10].display_name | Ligand efficiency |
| keywords[11].id | https://openalex.org/keywords/protein-structure |
| keywords[11].score | 0.3988751173019409 |
| keywords[11].display_name | Protein structure |
| keywords[12].id | https://openalex.org/keywords/chemistry |
| keywords[12].score | 0.3263509273529053 |
| keywords[12].display_name | Chemistry |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.19724854826927185 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/biology |
| keywords[14].score | 0.1552109718322754 |
| keywords[14].display_name | Biology |
| keywords[15].id | https://openalex.org/keywords/biochemistry |
| keywords[15].score | 0.11697635054588318 |
| keywords[15].display_name | Biochemistry |
| language | en |
| locations[0].id | doi:10.1002/prot.26827 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S121161810 |
| locations[0].source.issn | 0887-3585, 1097-0134 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0887-3585 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proteins Structure Function and Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/prot.26827 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proteins: Structure, Function, and Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1002/prot.26827 |
| locations[1].id | pmid:40195868 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Proteins |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40195868 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5072705391 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0586-6191 |
| authorships[0].author.display_name | Alex Morehead |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering & Computer Science NextGen Precision Health, University of Missouri Columbia Missouri USA |
| authorships[0].institutions[0].id | https://openalex.org/I76835614 |
| authorships[0].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Missouri |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alex Morehead |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering & Computer Science NextGen Precision Health, University of Missouri Columbia Missouri USA |
| authorships[1].author.id | https://openalex.org/A5027956425 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7570-8690 |
| authorships[1].author.display_name | Jian Liu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering & Computer Science NextGen Precision Health, University of Missouri Columbia Missouri USA |
| authorships[1].institutions[0].id | https://openalex.org/I76835614 |
| authorships[1].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Missouri |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jian Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering & Computer Science NextGen Precision Health, University of Missouri Columbia Missouri USA |
| authorships[2].author.id | https://openalex.org/A5115894115 |
| authorships[2].author.orcid | https://orcid.org/0009-0008-5283-4951 |
| authorships[2].author.display_name | Pawan Neupane |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering & Computer Science NextGen Precision Health, University of Missouri Columbia Missouri USA |
| authorships[2].institutions[0].id | https://openalex.org/I76835614 |
| authorships[2].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Missouri |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pawan Neupane |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering & Computer Science NextGen Precision Health, University of Missouri Columbia Missouri USA |
| authorships[3].author.id | https://openalex.org/A5039064042 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0251-3956 |
| authorships[3].author.display_name | Nabin Giri |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical Engineering & Computer Science NextGen Precision Health, University of Missouri Columbia Missouri USA |
| authorships[3].institutions[0].id | https://openalex.org/I76835614 |
| authorships[3].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Missouri |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nabin Giri |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical Engineering & Computer Science NextGen Precision Health, University of Missouri Columbia Missouri USA |
| authorships[4].author.id | https://openalex.org/A5044354277 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0305-2853 |
| authorships[4].author.display_name | Jianlin Cheng |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical Engineering & Computer Science NextGen Precision Health, University of Missouri Columbia Missouri USA |
| authorships[4].institutions[0].id | https://openalex.org/I76835614 |
| authorships[4].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Missouri |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jianlin Cheng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical Engineering & Computer Science NextGen Precision Health, University of Missouri Columbia Missouri USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/prot.26827 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-04-09T00:00:00 |
| display_name | Protein‐Ligand Structure and Affinity Prediction in |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-20T23:13:51.555489 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2034078336, https://openalex.org/W4319081913, https://openalex.org/W2946599741, https://openalex.org/W2149937887, https://openalex.org/W2593264178, https://openalex.org/W2136856901, https://openalex.org/W2368468053, https://openalex.org/W2165099221, https://openalex.org/W2058542300, https://openalex.org/W2043066834 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1002/prot.26827 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S121161810 |
| best_oa_location.source.issn | 0887-3585, 1097-0134 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0887-3585 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proteins Structure Function and Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/prot.26827 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proteins: Structure, Function, and Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1002/prot.26827 |
| primary_location.id | doi:10.1002/prot.26827 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S121161810 |
| primary_location.source.issn | 0887-3585, 1097-0134 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0887-3585 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proteins Structure Function and Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/prot.26827 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proteins: Structure, Function, and Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1002/prot.26827 |
| publication_date | 2025-04-08 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4387357260, https://openalex.org/W4388185854, https://openalex.org/W4302307901, https://openalex.org/W4385613515, https://openalex.org/W4391542588, https://openalex.org/W4392341014, https://openalex.org/W4387499716, https://openalex.org/W4392544734, https://openalex.org/W4300978626, https://openalex.org/W4398796548, https://openalex.org/W4405468754, https://openalex.org/W4385825255, https://openalex.org/W4389696354, https://openalex.org/W4286500588, https://openalex.org/W4327550249, https://openalex.org/W4396721167, https://openalex.org/W4382011228, https://openalex.org/W6779823529, https://openalex.org/W6797906067, https://openalex.org/W4281969232, https://openalex.org/W6846539466, https://openalex.org/W6853947573, https://openalex.org/W4391673325, https://openalex.org/W2114162221, https://openalex.org/W4221096048, https://openalex.org/W2039350725, https://openalex.org/W6660292653, https://openalex.org/W4403324307, https://openalex.org/W4405468413, https://openalex.org/W3177150392, https://openalex.org/W3036167779, https://openalex.org/W4391747328, https://openalex.org/W4382490804 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 10, 54, 58, 64, 93, 112 |
| abstract_inverted_index.by | 34 |
| abstract_inverted_index.in | 13, 136, 145 |
| abstract_inverted_index.is | 9, 21, 76, 173 |
| abstract_inverted_index.it | 80 |
| abstract_inverted_index.of | 4, 29, 60, 69, 150 |
| abstract_inverted_index.on | 176 |
| abstract_inverted_index.to | 7, 25, 40, 47, 78, 83 |
| abstract_inverted_index.we | 89 |
| abstract_inverted_index.The | 166 |
| abstract_inverted_index.and | 16, 45, 57, 67, 72, 98, 111, 122, 141, 159 |
| abstract_inverted_index.for | 107, 119, 152, 161, 169 |
| abstract_inverted_index.how | 24, 46 |
| abstract_inverted_index.its | 157 |
| abstract_inverted_index.new | 84, 113 |
| abstract_inverted_index.the | 2, 27, 35, 42, 50, 131, 146 |
| abstract_inverted_index.yet | 19 |
| abstract_inverted_index.16th | 147 |
| abstract_inverted_index.COM_ | 171 |
| abstract_inverted_index.best | 43 |
| abstract_inverted_index.both | 137 |
| abstract_inverted_index.code | 168 |
| abstract_inverted_index.deep | 37, 94, 114 |
| abstract_inverted_index.drug | 17, 163 |
| abstract_inverted_index.end, | 88 |
| abstract_inverted_index.flow | 116 |
| abstract_inverted_index.list | 59 |
| abstract_inverted_index.pose | 109 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.well | 82 |
| abstract_inverted_index.MULTI | 170 |
| abstract_inverted_index.about | 23 |
| abstract_inverted_index.among | 130 |
| abstract_inverted_index.blind | 65 |
| abstract_inverted_index.bound | 6 |
| abstract_inverted_index.joint | 120 |
| abstract_inverted_index.known | 22 |
| abstract_inverted_index.model | 118 |
| abstract_inverted_index.poses | 44 |
| abstract_inverted_index.ensure | 79 |
| abstract_inverted_index.freely | 174 |
| abstract_inverted_index.latest | 36 |
| abstract_inverted_index.ligand | 61, 128, 133, 172 |
| abstract_inverted_index.little | 20 |
| abstract_inverted_index.modern | 14 |
| abstract_inverted_index.ranked | 129 |
| abstract_inverted_index.source | 167 |
| abstract_inverted_index.target | 56 |
| abstract_inverted_index.(poses) | 32 |
| abstract_inverted_index.GitHub. | 177 |
| abstract_inverted_index.Towards | 86 |
| abstract_inverted_index.between | 53 |
| abstract_inverted_index.binding | 51, 73, 99, 123, 142 |
| abstract_inverted_index.combine | 26 |
| abstract_inverted_index.ligand, | 92 |
| abstract_inverted_index.ligands | 5 |
| abstract_inverted_index.methods | 39, 135 |
| abstract_inverted_index.problem | 12 |
| abstract_inverted_index.protein | 55 |
| abstract_inverted_index.ranking | 106, 110 |
| abstract_inverted_index.top‐5 | 132 |
| abstract_inverted_index.utility | 160 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Critical | 148 |
| abstract_inverted_index.Further, | 63 |
| abstract_inverted_index.Notably, | 126 |
| abstract_inverted_index.affinity | 52, 74, 100, 124, 143 |
| abstract_inverted_index.efficacy | 158 |
| abstract_inverted_index.efforts. | 165 |
| abstract_inverted_index.ensemble | 102 |
| abstract_inverted_index.estimate | 49 |
| abstract_inverted_index.identify | 41 |
| abstract_inverted_index.learning | 38 |
| abstract_inverted_index.matching | 117 |
| abstract_inverted_index.produced | 33 |
| abstract_inverted_index.proteins | 8 |
| abstract_inverted_index.(CASP16), | 155 |
| abstract_inverted_index.MULTICOM_ | 91, 127 |
| abstract_inverted_index.Structure | 153 |
| abstract_inverted_index.available | 175 |
| abstract_inverted_index.consensus | 105 |
| abstract_inverted_index.discovery | 164 |
| abstract_inverted_index.featuring | 103 |
| abstract_inverted_index.introduce | 90 |
| abstract_inverted_index.necessary | 77 |
| abstract_inverted_index.settings. | 85 |
| abstract_inverted_index.structure | 3, 31, 71, 97, 121, 139 |
| abstract_inverted_index.Assessment | 149 |
| abstract_inverted_index.Predicting | 1 |
| abstract_inverted_index.Prediction | 154 |
| abstract_inverted_index.Techniques | 151 |
| abstract_inverted_index.accurately | 48 |
| abstract_inverted_index.assessment | 68 |
| abstract_inverted_index.discovery, | 18 |
| abstract_inverted_index.generative | 115 |
| abstract_inverted_index.prediction | 75, 101, 134, 140, 144 |
| abstract_inverted_index.structural | 104 |
| abstract_inverted_index.candidates. | 62 |
| abstract_inverted_index.generalizes | 81 |
| abstract_inverted_index.prediction. | 125 |
| abstract_inverted_index.predictions | 28 |
| abstract_inverted_index.benchmarking | 66 |
| abstract_inverted_index.foundational | 11 |
| abstract_inverted_index.real‐world | 162 |
| abstract_inverted_index.unsupervised | 108 |
| abstract_inverted_index.biotechnology | 15 |
| abstract_inverted_index.demonstrating | 156 |
| abstract_inverted_index.learning‐based | 95 |
| abstract_inverted_index.protein‐ligand | 30, 70, 96, 138 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.94698503 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |