Prototypical Progressive Alignment and Reweighting for Generalizable Semantic Segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.11955
Generalizable semantic segmentation aims to perform well on unseen target domains, a critical challenge due to real-world applications requiring high generalizability. Class-wise prototypes, representing class centroids, serve as domain-invariant cues that benefit generalization due to their stability and semantic consistency. However, this approach faces three challenges. First, existing methods often adopt coarse prototypical alignment strategies, which may hinder performance. Second, naive prototypes computed by averaging source batch features are prone to overfitting and may be negatively affected by unrelated source data. Third, most methods treat all source samples equally, ignoring the fact that different features have varying adaptation difficulties. To address these limitations, we propose a novel framework for generalizable semantic segmentation: Prototypical Progressive Alignment and Reweighting (PPAR), leveraging the strong generalization ability of the CLIP model. Specifically, we define two prototypes: the Original Text Prototype (OTP) and Visual Text Prototype (VTP), generated via CLIP to serve as a solid base for alignment. We then introduce a progressive alignment strategy that aligns features in an easy-to-difficult manner, reducing domain gaps gradually. Furthermore, we propose a prototypical reweighting mechanism that estimates the reliability of source data and adjusts its contribution, mitigating the effect of irrelevant or harmful features (i.e., reducing negative transfer). We also provide a theoretical analysis showing the alignment between our method and domain generalization theory. Extensive experiments across multiple benchmarks demonstrate that PPAR achieves state-of-the-art performance, validating its effectiveness.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.11955
- https://arxiv.org/pdf/2507.11955
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415141107
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415141107Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.11955Digital Object Identifier
- Title
-
Prototypical Progressive Alignment and Reweighting for Generalizable Semantic SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-16Full publication date if available
- Authors
-
Yuhang Zhang, Zhengyu Zhang, Muxin Liao, Shishun Tian, Wenbin Zou, Lu Zhang, Chen XuList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.11955Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.11955Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.11955Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415141107 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.11955 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.11955 |
| ids.openalex | https://openalex.org/W4415141107 |
| fwci | |
| type | preprint |
| title | Prototypical Progressive Alignment and Reweighting for Generalizable Semantic Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10601 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.870199978351593 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Handwritten Text Recognition Techniques |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8442000150680542 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.8147000074386597 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.11955 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.11955 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.11955 |
| locations[1].id | doi:10.48550/arxiv.2507.11955 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.11955 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100321495 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6404-9952 |
| authorships[0].author.display_name | Yuhang Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Yuhang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5074110693 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8385-4890 |
| authorships[1].author.display_name | Zhengyu Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Zhengyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5000209211 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8461-1946 |
| authorships[2].author.display_name | Muxin Liao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liao, Muxin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076929850 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7616-8382 |
| authorships[3].author.display_name | Shishun Tian |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tian, Shishun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5035616324 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1389-9089 |
| authorships[4].author.display_name | Wenbin Zou |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zou, Wenbin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5035359666 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8859-5453 |
| authorships[5].author.display_name | Lu Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhang, Lu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5060063179 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1046-7144 |
| authorships[6].author.display_name | Chen Xu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xu, Chen |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.11955 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-14T00:00:00 |
| display_name | Prototypical Progressive Alignment and Reweighting for Generalizable Semantic Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10601 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.870199978351593 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Handwritten Text Recognition Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.11955 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.11955 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.11955 |
| primary_location.id | pmh:oai:arXiv.org:2507.11955 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.11955 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.11955 |
| publication_date | 2025-07-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 105, 148, 156, 174, 204 |
| abstract_inverted_index.To | 99 |
| abstract_inverted_index.We | 153, 201 |
| abstract_inverted_index.an | 164 |
| abstract_inverted_index.as | 27, 147 |
| abstract_inverted_index.be | 74 |
| abstract_inverted_index.by | 63, 77 |
| abstract_inverted_index.in | 163 |
| abstract_inverted_index.of | 123, 182, 192 |
| abstract_inverted_index.on | 7 |
| abstract_inverted_index.or | 194 |
| abstract_inverted_index.to | 4, 15, 34, 70, 145 |
| abstract_inverted_index.we | 103, 128, 172 |
| abstract_inverted_index.all | 85 |
| abstract_inverted_index.and | 37, 72, 115, 137, 185, 213 |
| abstract_inverted_index.are | 68 |
| abstract_inverted_index.due | 14, 33 |
| abstract_inverted_index.for | 108, 151 |
| abstract_inverted_index.its | 187, 229 |
| abstract_inverted_index.may | 56, 73 |
| abstract_inverted_index.our | 211 |
| abstract_inverted_index.the | 90, 119, 124, 132, 180, 190, 208 |
| abstract_inverted_index.two | 130 |
| abstract_inverted_index.via | 143 |
| abstract_inverted_index.CLIP | 125, 144 |
| abstract_inverted_index.PPAR | 224 |
| abstract_inverted_index.Text | 134, 139 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.also | 202 |
| abstract_inverted_index.base | 150 |
| abstract_inverted_index.cues | 29 |
| abstract_inverted_index.data | 184 |
| abstract_inverted_index.fact | 91 |
| abstract_inverted_index.gaps | 169 |
| abstract_inverted_index.have | 95 |
| abstract_inverted_index.high | 19 |
| abstract_inverted_index.most | 82 |
| abstract_inverted_index.that | 30, 92, 160, 178, 223 |
| abstract_inverted_index.then | 154 |
| abstract_inverted_index.this | 41 |
| abstract_inverted_index.well | 6 |
| abstract_inverted_index.(OTP) | 136 |
| abstract_inverted_index.adopt | 50 |
| abstract_inverted_index.batch | 66 |
| abstract_inverted_index.class | 24 |
| abstract_inverted_index.data. | 80 |
| abstract_inverted_index.faces | 43 |
| abstract_inverted_index.naive | 60 |
| abstract_inverted_index.novel | 106 |
| abstract_inverted_index.often | 49 |
| abstract_inverted_index.prone | 69 |
| abstract_inverted_index.serve | 26, 146 |
| abstract_inverted_index.solid | 149 |
| abstract_inverted_index.their | 35 |
| abstract_inverted_index.these | 101 |
| abstract_inverted_index.three | 44 |
| abstract_inverted_index.treat | 84 |
| abstract_inverted_index.which | 55 |
| abstract_inverted_index.(VTP), | 141 |
| abstract_inverted_index.(i.e., | 197 |
| abstract_inverted_index.First, | 46 |
| abstract_inverted_index.Third, | 81 |
| abstract_inverted_index.Visual | 138 |
| abstract_inverted_index.across | 219 |
| abstract_inverted_index.aligns | 161 |
| abstract_inverted_index.coarse | 51 |
| abstract_inverted_index.define | 129 |
| abstract_inverted_index.domain | 168, 214 |
| abstract_inverted_index.effect | 191 |
| abstract_inverted_index.hinder | 57 |
| abstract_inverted_index.method | 212 |
| abstract_inverted_index.model. | 126 |
| abstract_inverted_index.source | 65, 79, 86, 183 |
| abstract_inverted_index.strong | 120 |
| abstract_inverted_index.target | 9 |
| abstract_inverted_index.unseen | 8 |
| abstract_inverted_index.(PPAR), | 117 |
| abstract_inverted_index.Second, | 59 |
| abstract_inverted_index.ability | 122 |
| abstract_inverted_index.address | 100 |
| abstract_inverted_index.adjusts | 186 |
| abstract_inverted_index.benefit | 31 |
| abstract_inverted_index.between | 210 |
| abstract_inverted_index.harmful | 195 |
| abstract_inverted_index.manner, | 166 |
| abstract_inverted_index.methods | 48, 83 |
| abstract_inverted_index.perform | 5 |
| abstract_inverted_index.propose | 104, 173 |
| abstract_inverted_index.provide | 203 |
| abstract_inverted_index.samples | 87 |
| abstract_inverted_index.showing | 207 |
| abstract_inverted_index.theory. | 216 |
| abstract_inverted_index.varying | 96 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.Original | 133 |
| abstract_inverted_index.achieves | 225 |
| abstract_inverted_index.affected | 76 |
| abstract_inverted_index.analysis | 206 |
| abstract_inverted_index.approach | 42 |
| abstract_inverted_index.computed | 62 |
| abstract_inverted_index.critical | 12 |
| abstract_inverted_index.domains, | 10 |
| abstract_inverted_index.equally, | 88 |
| abstract_inverted_index.existing | 47 |
| abstract_inverted_index.features | 67, 94, 162, 196 |
| abstract_inverted_index.ignoring | 89 |
| abstract_inverted_index.multiple | 220 |
| abstract_inverted_index.negative | 199 |
| abstract_inverted_index.reducing | 167, 198 |
| abstract_inverted_index.semantic | 1, 38, 110 |
| abstract_inverted_index.strategy | 159 |
| abstract_inverted_index.Alignment | 114 |
| abstract_inverted_index.Extensive | 217 |
| abstract_inverted_index.Prototype | 135, 140 |
| abstract_inverted_index.alignment | 53, 158, 209 |
| abstract_inverted_index.averaging | 64 |
| abstract_inverted_index.challenge | 13 |
| abstract_inverted_index.different | 93 |
| abstract_inverted_index.estimates | 179 |
| abstract_inverted_index.framework | 107 |
| abstract_inverted_index.generated | 142 |
| abstract_inverted_index.introduce | 155 |
| abstract_inverted_index.mechanism | 177 |
| abstract_inverted_index.requiring | 18 |
| abstract_inverted_index.stability | 36 |
| abstract_inverted_index.unrelated | 78 |
| abstract_inverted_index.Class-wise | 21 |
| abstract_inverted_index.adaptation | 97 |
| abstract_inverted_index.alignment. | 152 |
| abstract_inverted_index.benchmarks | 221 |
| abstract_inverted_index.centroids, | 25 |
| abstract_inverted_index.gradually. | 170 |
| abstract_inverted_index.irrelevant | 193 |
| abstract_inverted_index.leveraging | 118 |
| abstract_inverted_index.mitigating | 189 |
| abstract_inverted_index.negatively | 75 |
| abstract_inverted_index.prototypes | 61 |
| abstract_inverted_index.real-world | 16 |
| abstract_inverted_index.transfer). | 200 |
| abstract_inverted_index.validating | 228 |
| abstract_inverted_index.Progressive | 113 |
| abstract_inverted_index.Reweighting | 116 |
| abstract_inverted_index.challenges. | 45 |
| abstract_inverted_index.demonstrate | 222 |
| abstract_inverted_index.experiments | 218 |
| abstract_inverted_index.overfitting | 71 |
| abstract_inverted_index.progressive | 157 |
| abstract_inverted_index.prototypes, | 22 |
| abstract_inverted_index.prototypes: | 131 |
| abstract_inverted_index.reliability | 181 |
| abstract_inverted_index.reweighting | 176 |
| abstract_inverted_index.strategies, | 54 |
| abstract_inverted_index.theoretical | 205 |
| abstract_inverted_index.Furthermore, | 171 |
| abstract_inverted_index.Prototypical | 112 |
| abstract_inverted_index.applications | 17 |
| abstract_inverted_index.consistency. | 39 |
| abstract_inverted_index.limitations, | 102 |
| abstract_inverted_index.performance, | 227 |
| abstract_inverted_index.performance. | 58 |
| abstract_inverted_index.prototypical | 52, 175 |
| abstract_inverted_index.representing | 23 |
| abstract_inverted_index.segmentation | 2 |
| abstract_inverted_index.Generalizable | 0 |
| abstract_inverted_index.Specifically, | 127 |
| abstract_inverted_index.contribution, | 188 |
| abstract_inverted_index.difficulties. | 98 |
| abstract_inverted_index.generalizable | 109 |
| abstract_inverted_index.segmentation: | 111 |
| abstract_inverted_index.effectiveness. | 230 |
| abstract_inverted_index.generalization | 32, 121, 215 |
| abstract_inverted_index.domain-invariant | 28 |
| abstract_inverted_index.state-of-the-art | 226 |
| abstract_inverted_index.easy-to-difficult | 165 |
| abstract_inverted_index.generalizability. | 20 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |