Psychological Stress Classification Using EEG and ECG: A CNN Based Multimodal Fusion Model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-4015916/v1
Psychological stress cannot be ignored in today's society, and there is an urgent need for an objective and cost-effective method to detect it. However, traditional machine learning methods that require manual feature extraction require a lot of research time and cannot guarantee accuracy. In this paper, we establish a four-category stress multimodal dataset by collecting EEG and ECG signals from 24 subjects performing mental arithmetic tasks with different difficulty levels and propose a multimodal decision fusion model based on Convolution Neural Network to classify the data. The prediction probabilities of EEG and ECG signals for the four stress categories are first extracted by two models each and then fused into the decision model for the final classification, 5-fold cross-validation and Leave-Three-Subjects-Out experiments are performed, which achieve 91.14% and 91.97% accuracy, respectively. In addition, the features of the convolution layer were visualized using the 1D-Grad-CAM method to improve the interpretability of the model.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-4015916/v1
- https://www.researchsquare.com/article/rs-4015916/latest.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392706073
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392706073Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-4015916/v1Digital Object Identifier
- Title
-
Psychological Stress Classification Using EEG and ECG: A CNN Based Multimodal Fusion ModelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-12Full publication date if available
- Authors
-
Ben Zhou, Lei Wang, Chenyu JiangList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-4015916/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-4015916/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-4015916/latest.pdfDirect OA link when available
- Concepts
-
Interpretability, Computer science, Electroencephalography, Convolutional neural network, Artificial intelligence, Convolution (computer science), Pattern recognition (psychology), Feature (linguistics), Feature extraction, Artificial neural network, Machine learning, Psychology, Linguistics, Philosophy, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392706073 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-4015916/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-4015916/v1 |
| ids.openalex | https://openalex.org/W4392706073 |
| fwci | 0.70280056 |
| type | preprint |
| title | Psychological Stress Classification Using EEG and ECG: A CNN Based Multimodal Fusion Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10745 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9902999997138977 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Heart Rate Variability and Autonomic Control |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9648000001907349 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7487540245056152 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6740743517875671 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C522805319 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6656538248062134 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[2].display_name | Electroencephalography |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6558581590652466 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6534498333930969 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C45347329 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6107575297355652 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[5].display_name | Convolution (computer science) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5173367857933044 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4951383173465729 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C52622490 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4554178714752197 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[8].display_name | Feature extraction |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43679141998291016 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4148780107498169 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C15744967 |
| concepts[11].level | 0 |
| concepts[11].score | 0.17913419008255005 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[11].display_name | Psychology |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C118552586 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[14].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.7487540245056152 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6740743517875671 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/electroencephalography |
| keywords[2].score | 0.6656538248062134 |
| keywords[2].display_name | Electroencephalography |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.6558581590652466 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6534498333930969 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/convolution |
| keywords[5].score | 0.6107575297355652 |
| keywords[5].display_name | Convolution (computer science) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5173367857933044 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.4951383173465729 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/feature-extraction |
| keywords[8].score | 0.4554178714752197 |
| keywords[8].display_name | Feature extraction |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.43679141998291016 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.4148780107498169 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/psychology |
| keywords[11].score | 0.17913419008255005 |
| keywords[11].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-4015916/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-4015916/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-4015916/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5035804300 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-4004-2490 |
| authorships[0].author.display_name | Ben Zhou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I134738993 |
| authorships[0].affiliations[0].raw_affiliation_string | Shandong University of Traditional Chinese Medicine |
| authorships[0].institutions[0].id | https://openalex.org/I134738993 |
| authorships[0].institutions[0].ror | https://ror.org/0523y5c19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I134738993 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shandong University of Traditional Chinese Medicine |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ben Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shandong University of Traditional Chinese Medicine |
| authorships[1].author.id | https://openalex.org/A5100436158 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4415-1268 |
| authorships[1].author.display_name | Lei Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210092817 |
| authorships[1].affiliations[0].raw_affiliation_string | Suzhou Institute of Biomedical Engineering and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I4210092817 |
| authorships[1].institutions[0].ror | https://ror.org/00f58mx93 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210092817 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Suzhou Institute of Biomedical Engineering and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lei Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Suzhou Institute of Biomedical Engineering and Technology |
| authorships[2].author.id | https://openalex.org/A5067316154 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9432-7893 |
| authorships[2].author.display_name | Chenyu Jiang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210092817 |
| authorships[2].affiliations[0].raw_affiliation_string | Suzhou Institute of Biomedical Engineering and Technology |
| authorships[2].institutions[0].id | https://openalex.org/I4210092817 |
| authorships[2].institutions[0].ror | https://ror.org/00f58mx93 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210092817 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Suzhou Institute of Biomedical Engineering and Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Chenyu Jiang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Suzhou Institute of Biomedical Engineering and Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-4015916/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Psychological Stress Classification Using EEG and ECG: A CNN Based Multimodal Fusion Model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W2888392564, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W4390569940, https://openalex.org/W4361193272, https://openalex.org/W2963326959, https://openalex.org/W4388685194, https://openalex.org/W2964954556, https://openalex.org/W2032664813 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-4015916/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-4015916/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4015916/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-4015916/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-4015916/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4015916/v1 |
| publication_date | 2024-03-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4220754167, https://openalex.org/W2155686640, https://openalex.org/W2043559838, https://openalex.org/W3175145814, https://openalex.org/W2891457579, https://openalex.org/W4210730500, https://openalex.org/W1978690664, https://openalex.org/W3022345324, https://openalex.org/W4386825031, https://openalex.org/W4375858565, https://openalex.org/W4386879004, https://openalex.org/W4367187727, https://openalex.org/W2996057901, https://openalex.org/W4294796891, https://openalex.org/W3195539947, https://openalex.org/W3189250200, https://openalex.org/W4386357501, https://openalex.org/W2936978234, https://openalex.org/W2313602734, https://openalex.org/W2958197594, https://openalex.org/W4213031993, https://openalex.org/W2962858109, https://openalex.org/W2741907166, https://openalex.org/W2559463885, https://openalex.org/W4288056088, https://openalex.org/W4300942166, https://openalex.org/W3102455230, https://openalex.org/W4386996783 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 35, 49, 73 |
| abstract_inverted_index.24 | 61 |
| abstract_inverted_index.In | 44, 132 |
| abstract_inverted_index.an | 12, 16 |
| abstract_inverted_index.be | 4 |
| abstract_inverted_index.by | 54, 103 |
| abstract_inverted_index.in | 6 |
| abstract_inverted_index.is | 11 |
| abstract_inverted_index.of | 37, 90, 136, 150 |
| abstract_inverted_index.on | 79 |
| abstract_inverted_index.to | 21, 83, 146 |
| abstract_inverted_index.we | 47 |
| abstract_inverted_index.ECG | 58, 93 |
| abstract_inverted_index.EEG | 56, 91 |
| abstract_inverted_index.The | 87 |
| abstract_inverted_index.and | 9, 18, 40, 57, 71, 92, 107, 120, 128 |
| abstract_inverted_index.are | 100, 123 |
| abstract_inverted_index.for | 15, 95, 114 |
| abstract_inverted_index.it. | 23 |
| abstract_inverted_index.lot | 36 |
| abstract_inverted_index.the | 85, 96, 111, 115, 134, 137, 143, 148, 151 |
| abstract_inverted_index.two | 104 |
| abstract_inverted_index.each | 106 |
| abstract_inverted_index.four | 97 |
| abstract_inverted_index.from | 60 |
| abstract_inverted_index.into | 110 |
| abstract_inverted_index.need | 14 |
| abstract_inverted_index.that | 29 |
| abstract_inverted_index.then | 108 |
| abstract_inverted_index.this | 45 |
| abstract_inverted_index.time | 39 |
| abstract_inverted_index.were | 140 |
| abstract_inverted_index.with | 67 |
| abstract_inverted_index.based | 78 |
| abstract_inverted_index.data. | 86 |
| abstract_inverted_index.final | 116 |
| abstract_inverted_index.first | 101 |
| abstract_inverted_index.fused | 109 |
| abstract_inverted_index.layer | 139 |
| abstract_inverted_index.model | 77, 113 |
| abstract_inverted_index.tasks | 66 |
| abstract_inverted_index.there | 10 |
| abstract_inverted_index.using | 142 |
| abstract_inverted_index.which | 125 |
| abstract_inverted_index.5-fold | 118 |
| abstract_inverted_index.91.14% | 127 |
| abstract_inverted_index.91.97% | 129 |
| abstract_inverted_index.Neural | 81 |
| abstract_inverted_index.cannot | 3, 41 |
| abstract_inverted_index.detect | 22 |
| abstract_inverted_index.fusion | 76 |
| abstract_inverted_index.levels | 70 |
| abstract_inverted_index.manual | 31 |
| abstract_inverted_index.mental | 64 |
| abstract_inverted_index.method | 20, 145 |
| abstract_inverted_index.model. | 152 |
| abstract_inverted_index.models | 105 |
| abstract_inverted_index.paper, | 46 |
| abstract_inverted_index.stress | 2, 51, 98 |
| abstract_inverted_index.urgent | 13 |
| abstract_inverted_index.Network | 82 |
| abstract_inverted_index.achieve | 126 |
| abstract_inverted_index.dataset | 53 |
| abstract_inverted_index.feature | 32 |
| abstract_inverted_index.ignored | 5 |
| abstract_inverted_index.improve | 147 |
| abstract_inverted_index.machine | 26 |
| abstract_inverted_index.methods | 28 |
| abstract_inverted_index.propose | 72 |
| abstract_inverted_index.require | 30, 34 |
| abstract_inverted_index.signals | 59, 94 |
| abstract_inverted_index.today's | 7 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.classify | 84 |
| abstract_inverted_index.decision | 75, 112 |
| abstract_inverted_index.features | 135 |
| abstract_inverted_index.learning | 27 |
| abstract_inverted_index.research | 38 |
| abstract_inverted_index.society, | 8 |
| abstract_inverted_index.subjects | 62 |
| abstract_inverted_index.accuracy, | 130 |
| abstract_inverted_index.accuracy. | 43 |
| abstract_inverted_index.addition, | 133 |
| abstract_inverted_index.different | 68 |
| abstract_inverted_index.establish | 48 |
| abstract_inverted_index.extracted | 102 |
| abstract_inverted_index.guarantee | 42 |
| abstract_inverted_index.objective | 17 |
| abstract_inverted_index.arithmetic | 65 |
| abstract_inverted_index.categories | 99 |
| abstract_inverted_index.collecting | 55 |
| abstract_inverted_index.difficulty | 69 |
| abstract_inverted_index.extraction | 33 |
| abstract_inverted_index.multimodal | 52, 74 |
| abstract_inverted_index.performed, | 124 |
| abstract_inverted_index.performing | 63 |
| abstract_inverted_index.prediction | 88 |
| abstract_inverted_index.visualized | 141 |
| abstract_inverted_index.1D-Grad-CAM | 144 |
| abstract_inverted_index.Convolution | 80 |
| abstract_inverted_index.convolution | 138 |
| abstract_inverted_index.experiments | 122 |
| abstract_inverted_index.traditional | 25 |
| abstract_inverted_index.Psychological | 1 |
| abstract_inverted_index.four-category | 50 |
| abstract_inverted_index.probabilities | 89 |
| abstract_inverted_index.respectively. | 131 |
| abstract_inverted_index.cost-effective | 19 |
| abstract_inverted_index.classification, | 117 |
| abstract_inverted_index.cross-validation | 119 |
| abstract_inverted_index.interpretability | 149 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| abstract_inverted_index.Leave-Three-Subjects-Out | 121 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.57003364 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |