Publisher Correction: Bayesian optimization with experimental failure for high-throughput materials growth Article Swipe
Yuki K. Wakabayashi
,
Takuma Otsuka
,
Yoshiharu Krockenberger
,
Hiroshi Sawada
,
Yoshitaka Taniyasu
,
Hideki Yamamoto
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1038/s41524-022-00892-7
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1038/s41524-022-00892-7
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41524-022-00892-7
- https://www.nature.com/articles/s41524-022-00892-7.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297895586
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297895586Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41524-022-00892-7Digital Object Identifier
- Title
-
Publisher Correction: Bayesian optimization with experimental failure for high-throughput materials growthWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-22Full publication date if available
- Authors
-
Yuki K. Wakabayashi, Takuma Otsuka, Yoshiharu Krockenberger, Hiroshi Sawada, Yoshitaka Taniyasu, Hideki YamamotoList of authors in order
- Landing page
-
https://doi.org/10.1038/s41524-022-00892-7Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41524-022-00892-7.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41524-022-00892-7.pdfDirect OA link when available
- Concepts
-
Throughput, Bayesian optimization, Bayesian probability, Computer science, Machine learning, Artificial intelligence, Telecommunications, WirelessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297895586 |
|---|---|
| doi | https://doi.org/10.1038/s41524-022-00892-7 |
| ids.doi | https://doi.org/10.1038/s41524-022-00892-7 |
| ids.openalex | https://openalex.org/W4297895586 |
| fwci | 0.0 |
| type | article |
| title | Publisher Correction: Bayesian optimization with experimental failure for high-throughput materials growth |
| biblio.issue | 1 |
| biblio.volume | 8 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.5777999758720398 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list.value | 2890 |
| apc_list.currency | USD |
| apc_list.value_usd | 2890 |
| apc_paid.value | 2890 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2890 |
| concepts[0].id | https://openalex.org/C157764524 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6578187942504883 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1383412 |
| concepts[0].display_name | Throughput |
| concepts[1].id | https://openalex.org/C2778049539 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6094417572021484 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17002908 |
| concepts[1].display_name | Bayesian optimization |
| concepts[2].id | https://openalex.org/C107673813 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6011653542518616 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[2].display_name | Bayesian probability |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5093694925308228 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.2602965235710144 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2560874819755554 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C76155785 |
| concepts[6].level | 1 |
| concepts[6].score | 0.04274114966392517 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[6].display_name | Telecommunications |
| concepts[7].id | https://openalex.org/C555944384 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[7].display_name | Wireless |
| keywords[0].id | https://openalex.org/keywords/throughput |
| keywords[0].score | 0.6578187942504883 |
| keywords[0].display_name | Throughput |
| keywords[1].id | https://openalex.org/keywords/bayesian-optimization |
| keywords[1].score | 0.6094417572021484 |
| keywords[1].display_name | Bayesian optimization |
| keywords[2].id | https://openalex.org/keywords/bayesian-probability |
| keywords[2].score | 0.6011653542518616 |
| keywords[2].display_name | Bayesian probability |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5093694925308228 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.2602965235710144 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.2560874819755554 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/telecommunications |
| keywords[6].score | 0.04274114966392517 |
| keywords[6].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1038/s41524-022-00892-7 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210232664 |
| locations[0].source.issn | 2057-3960 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2057-3960 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | npj Computational Materials |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41524-022-00892-7.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | npj Computational Materials |
| locations[0].landing_page_url | https://doi.org/10.1038/s41524-022-00892-7 |
| locations[1].id | pmh:oai:doaj.org/article:5b11f8cf97b641c089b8385b91cfcf84 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | npj Computational Materials, Vol 8, Iss 1, Pp 1-1 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/5b11f8cf97b641c089b8385b91cfcf84 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5086764479 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5057-2440 |
| authorships[0].author.display_name | Yuki K. Wakabayashi |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210105847 |
| authorships[0].affiliations[0].raw_affiliation_string | NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I4210105847 |
| authorships[0].institutions[0].ror | https://ror.org/01m2pas06 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210105847 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | NTT Basic Research Laboratories |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuki K. Wakabayashi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan |
| authorships[1].author.id | https://openalex.org/A5005813383 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7585-8202 |
| authorships[1].author.display_name | Takuma Otsuka |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2251713219 |
| authorships[1].affiliations[0].raw_affiliation_string | NTT Communication Science Laboratories, NTT Corporation, Soraku-gun, Kyoto, 619-0237, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I2251713219 |
| authorships[1].institutions[0].ror | https://ror.org/00berct97 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I2251713219 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | NTT (Japan) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Takuma Otsuka |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | NTT Communication Science Laboratories, NTT Corporation, Soraku-gun, Kyoto, 619-0237, Japan |
| authorships[2].author.id | https://openalex.org/A5063428250 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7801-2947 |
| authorships[2].author.display_name | Yoshiharu Krockenberger |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210105847 |
| authorships[2].affiliations[0].raw_affiliation_string | NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I4210105847 |
| authorships[2].institutions[0].ror | https://ror.org/01m2pas06 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210105847 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | NTT Basic Research Laboratories |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yoshiharu Krockenberger |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan |
| authorships[3].author.id | https://openalex.org/A5007032557 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4831-9286 |
| authorships[3].author.display_name | Hiroshi Sawada |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2251713219 |
| authorships[3].affiliations[0].raw_affiliation_string | NTT Communication Science Laboratories, NTT Corporation, Soraku-gun, Kyoto, 619-0237, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I2251713219 |
| authorships[3].institutions[0].ror | https://ror.org/00berct97 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I2251713219 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | NTT (Japan) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hiroshi Sawada |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | NTT Communication Science Laboratories, NTT Corporation, Soraku-gun, Kyoto, 619-0237, Japan |
| authorships[4].author.id | https://openalex.org/A5080534711 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yoshitaka Taniyasu |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210105847 |
| authorships[4].affiliations[0].raw_affiliation_string | NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I4210105847 |
| authorships[4].institutions[0].ror | https://ror.org/01m2pas06 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210105847 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | NTT Basic Research Laboratories |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yoshitaka Taniyasu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan |
| authorships[5].author.id | https://openalex.org/A5043496460 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1701-7090 |
| authorships[5].author.display_name | Hideki Yamamoto |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210105847 |
| authorships[5].affiliations[0].raw_affiliation_string | NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I4210105847 |
| authorships[5].institutions[0].ror | https://ror.org/01m2pas06 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210105847 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | NTT Basic Research Laboratories |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hideki Yamamoto |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41524-022-00892-7.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Publisher Correction: Bayesian optimization with experimental failure for high-throughput materials growth |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.5777999758720398 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W3106461837, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W3168182983, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4321472004 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1038/s41524-022-00892-7 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210232664 |
| best_oa_location.source.issn | 2057-3960 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2057-3960 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | npj Computational Materials |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41524-022-00892-7.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | npj Computational Materials |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41524-022-00892-7 |
| primary_location.id | doi:10.1038/s41524-022-00892-7 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210232664 |
| primary_location.source.issn | 2057-3960 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2057-3960 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | npj Computational Materials |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41524-022-00892-7.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | npj Computational Materials |
| primary_location.landing_page_url | https://doi.org/10.1038/s41524-022-00892-7 |
| publication_date | 2022-09-22 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5086764479 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I4210105847 |
| citation_normalized_percentile.value | 0.09601536 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |