PUnifiedNER: A Prompting-Based Unified NER System for Diverse Datasets Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v37i11.26564
Much of named entity recognition (NER) research focuses on developing dataset-specific models based on data from the domain of interest, and a limited set of related entity types. This is frustrating as each new dataset requires a new model to be trained and stored. In this work, we present a ``versatile'' model---the Prompting-based Unified NER system (PUnifiedNER)---that works with data from different domains and can recognise up to 37 entity types simultaneously, and theoretically it could be as many as possible. By using prompt learning, PUnifiedNER is a novel approach that is able to jointly train across multiple corpora, implementing intelligent on-demand entity recognition. Experimental results show that PUnifiedNER leads to significant prediction benefits compared to dataset-specific models with impressively reduced model deployment costs. Furthermore, the performance of PUnifiedNER can achieve competitive or even better performance than state-of-the-art domain-specific methods for some datasets. We also perform comprehensive pilot and ablation studies to support in-depth analysis of each component in PUnifiedNER.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v37i11.26564
- https://ojs.aaai.org/index.php/AAAI/article/download/26564/26336
- OA Status
- diamond
- Cited By
- 8
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382202624
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382202624Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v37i11.26564Digital Object Identifier
- Title
-
PUnifiedNER: A Prompting-Based Unified NER System for Diverse DatasetsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-26Full publication date if available
- Authors
-
Jinghui Lu, Rui Zhao, Brian Mac Namee, Fei TanList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v37i11.26564Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/26564/26336Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/26564/26336Direct OA link when available
- Concepts
-
Computer science, Named-entity recognition, Domain (mathematical analysis), Software deployment, Component (thermodynamics), Set (abstract data type), Artificial intelligence, Machine learning, Training set, Data mining, Information retrieval, Software engineering, Task (project management), Economics, Thermodynamics, Programming language, Mathematics, Mathematical analysis, Physics, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 3, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382202624 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v37i11.26564 |
| ids.doi | https://doi.org/10.1609/aaai.v37i11.26564 |
| ids.openalex | https://openalex.org/W4382202624 |
| fwci | 1.15366714 |
| type | article |
| title | PUnifiedNER: A Prompting-Based Unified NER System for Diverse Datasets |
| biblio.issue | 11 |
| biblio.volume | 37 |
| biblio.last_page | 13335 |
| biblio.first_page | 13327 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T11719 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9861000180244446 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Data Quality and Management |
| topics[2].id | https://openalex.org/T13702 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9591000080108643 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8633671998977661 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779135771 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6576264500617981 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q403574 |
| concepts[1].display_name | Named-entity recognition |
| concepts[2].id | https://openalex.org/C36503486 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6571120023727417 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[2].display_name | Domain (mathematical analysis) |
| concepts[3].id | https://openalex.org/C105339364 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6108924150466919 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2297740 |
| concepts[3].display_name | Software deployment |
| concepts[4].id | https://openalex.org/C168167062 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5340574979782104 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1117970 |
| concepts[4].display_name | Component (thermodynamics) |
| concepts[5].id | https://openalex.org/C177264268 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5309711694717407 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[5].display_name | Set (abstract data type) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4924367368221283 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4900578260421753 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C51632099 |
| concepts[8].level | 2 |
| concepts[8].score | 0.445998877286911 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[8].display_name | Training set |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40849795937538147 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C23123220 |
| concepts[10].level | 1 |
| concepts[10].score | 0.34253740310668945 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[10].display_name | Information retrieval |
| concepts[11].id | https://openalex.org/C115903868 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1379397213459015 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[11].display_name | Software engineering |
| concepts[12].id | https://openalex.org/C2780451532 |
| concepts[12].level | 2 |
| concepts[12].score | 0.09098497033119202 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[12].display_name | Task (project management) |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| concepts[14].id | https://openalex.org/C97355855 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[14].display_name | Thermodynamics |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C187736073 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[19].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8633671998977661 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/named-entity-recognition |
| keywords[1].score | 0.6576264500617981 |
| keywords[1].display_name | Named-entity recognition |
| keywords[2].id | https://openalex.org/keywords/domain |
| keywords[2].score | 0.6571120023727417 |
| keywords[2].display_name | Domain (mathematical analysis) |
| keywords[3].id | https://openalex.org/keywords/software-deployment |
| keywords[3].score | 0.6108924150466919 |
| keywords[3].display_name | Software deployment |
| keywords[4].id | https://openalex.org/keywords/component |
| keywords[4].score | 0.5340574979782104 |
| keywords[4].display_name | Component (thermodynamics) |
| keywords[5].id | https://openalex.org/keywords/set |
| keywords[5].score | 0.5309711694717407 |
| keywords[5].display_name | Set (abstract data type) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4924367368221283 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4900578260421753 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/training-set |
| keywords[8].score | 0.445998877286911 |
| keywords[8].display_name | Training set |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.40849795937538147 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/information-retrieval |
| keywords[10].score | 0.34253740310668945 |
| keywords[10].display_name | Information retrieval |
| keywords[11].id | https://openalex.org/keywords/software-engineering |
| keywords[11].score | 0.1379397213459015 |
| keywords[11].display_name | Software engineering |
| keywords[12].id | https://openalex.org/keywords/task |
| keywords[12].score | 0.09098497033119202 |
| keywords[12].display_name | Task (project management) |
| language | en |
| locations[0].id | doi:10.1609/aaai.v37i11.26564 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/26564/26336 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v37i11.26564 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101643423 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2064-5407 |
| authorships[0].author.display_name | Jinghui Lu |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210128910 |
| authorships[0].affiliations[0].raw_affiliation_string | SenseTime Group Limited |
| authorships[0].institutions[0].id | https://openalex.org/I4210128910 |
| authorships[0].institutions[0].ror | https://ror.org/036wd5777 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210128910 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Group Sense (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jinghui Lu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | SenseTime Group Limited |
| authorships[1].author.id | https://openalex.org/A5100684043 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2993-2023 |
| authorships[1].author.display_name | Rui Zhao |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210128910 |
| authorships[1].affiliations[0].raw_affiliation_string | SenseTime Group Limited |
| authorships[1].institutions[0].id | https://openalex.org/I4210128910 |
| authorships[1].institutions[0].ror | https://ror.org/036wd5777 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210128910 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Group Sense (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rui Zhao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | SenseTime Group Limited |
| authorships[2].author.id | https://openalex.org/A5084251444 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2518-0274 |
| authorships[2].author.display_name | Brian Mac Namee |
| authorships[2].countries | IE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I100930933 |
| authorships[2].affiliations[0].raw_affiliation_string | University College Dublin |
| authorships[2].institutions[0].id | https://openalex.org/I100930933 |
| authorships[2].institutions[0].ror | https://ror.org/05m7pjf47 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I100930933 |
| authorships[2].institutions[0].country_code | IE |
| authorships[2].institutions[0].display_name | University College Dublin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Brian Mac Namee |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University College Dublin |
| authorships[3].author.id | https://openalex.org/A5100740041 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3232-1912 |
| authorships[3].author.display_name | Fei Tan |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210128910 |
| authorships[3].affiliations[0].raw_affiliation_string | SenseTime Group Limited |
| authorships[3].institutions[0].id | https://openalex.org/I4210128910 |
| authorships[3].institutions[0].ror | https://ror.org/036wd5777 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210128910 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Group Sense (China) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Fei Tan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | SenseTime Group Limited |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/26564/26336 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | PUnifiedNER: A Prompting-Based Unified NER System for Diverse Datasets |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W96612179, https://openalex.org/W2770234245, https://openalex.org/W2566006169, https://openalex.org/W2987774938, https://openalex.org/W632915154, https://openalex.org/W4229499248, https://openalex.org/W2554503563, https://openalex.org/W2983934248, https://openalex.org/W1605730749, https://openalex.org/W3093912612 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v37i11.26564 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/26564/26336 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v37i11.26564 |
| primary_location.id | doi:10.1609/aaai.v37i11.26564 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/26564/26336 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v37i11.26564 |
| publication_date | 2023-06-26 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6778883912, https://openalex.org/W2896457183, https://openalex.org/W6765032226, https://openalex.org/W3175562427, https://openalex.org/W6767179725, https://openalex.org/W6751760779, https://openalex.org/W3020908159, https://openalex.org/W2147880316, https://openalex.org/W6793601707, https://openalex.org/W2252066972, https://openalex.org/W3173389866, https://openalex.org/W4226470037, https://openalex.org/W6776740009, https://openalex.org/W3160104933, https://openalex.org/W2993313557, https://openalex.org/W4221140922, https://openalex.org/W4221166835, https://openalex.org/W6766378161, https://openalex.org/W4287890934, https://openalex.org/W2103076621, https://openalex.org/W3162323273, https://openalex.org/W3101785758, https://openalex.org/W3201425170, https://openalex.org/W6796146148, https://openalex.org/W6776960202, https://openalex.org/W4293791009, https://openalex.org/W6751103833, https://openalex.org/W4297801719, https://openalex.org/W2962904552, https://openalex.org/W3176023514, https://openalex.org/W2803609931, https://openalex.org/W4288089799, https://openalex.org/W3035375600, https://openalex.org/W3034727271, https://openalex.org/W4286982826, https://openalex.org/W4286769130, https://openalex.org/W4309523728, https://openalex.org/W3176680950, https://openalex.org/W4304700932, https://openalex.org/W4205991051, https://openalex.org/W4385245566, https://openalex.org/W3176971429, https://openalex.org/W2998811572, https://openalex.org/W3035642486, https://openalex.org/W4292779060, https://openalex.org/W2970323499, https://openalex.org/W3099655892, https://openalex.org/W3034379414, https://openalex.org/W2983180560, https://openalex.org/W3175225269, https://openalex.org/W4300979355, https://openalex.org/W2952595356, https://openalex.org/W4312956471 |
| referenced_works_count | 53 |
| abstract_inverted_index.a | 21, 36, 49, 87 |
| abstract_inverted_index.37 | 68 |
| abstract_inverted_index.By | 81 |
| abstract_inverted_index.In | 44 |
| abstract_inverted_index.We | 143 |
| abstract_inverted_index.as | 31, 77, 79 |
| abstract_inverted_index.be | 40, 76 |
| abstract_inverted_index.in | 158 |
| abstract_inverted_index.is | 29, 86, 91 |
| abstract_inverted_index.it | 74 |
| abstract_inverted_index.of | 1, 18, 24, 127, 155 |
| abstract_inverted_index.on | 8, 13 |
| abstract_inverted_index.or | 132 |
| abstract_inverted_index.to | 39, 67, 93, 110, 115, 151 |
| abstract_inverted_index.up | 66 |
| abstract_inverted_index.we | 47 |
| abstract_inverted_index.NER | 54 |
| abstract_inverted_index.and | 20, 42, 63, 72, 148 |
| abstract_inverted_index.can | 64, 129 |
| abstract_inverted_index.for | 140 |
| abstract_inverted_index.new | 33, 37 |
| abstract_inverted_index.set | 23 |
| abstract_inverted_index.the | 16, 125 |
| abstract_inverted_index.Much | 0 |
| abstract_inverted_index.This | 28 |
| abstract_inverted_index.able | 92 |
| abstract_inverted_index.also | 144 |
| abstract_inverted_index.data | 14, 59 |
| abstract_inverted_index.each | 32, 156 |
| abstract_inverted_index.even | 133 |
| abstract_inverted_index.from | 15, 60 |
| abstract_inverted_index.many | 78 |
| abstract_inverted_index.show | 106 |
| abstract_inverted_index.some | 141 |
| abstract_inverted_index.than | 136 |
| abstract_inverted_index.that | 90, 107 |
| abstract_inverted_index.this | 45 |
| abstract_inverted_index.with | 58, 118 |
| abstract_inverted_index.(NER) | 5 |
| abstract_inverted_index.based | 12 |
| abstract_inverted_index.could | 75 |
| abstract_inverted_index.leads | 109 |
| abstract_inverted_index.model | 38, 121 |
| abstract_inverted_index.named | 2 |
| abstract_inverted_index.novel | 88 |
| abstract_inverted_index.pilot | 147 |
| abstract_inverted_index.train | 95 |
| abstract_inverted_index.types | 70 |
| abstract_inverted_index.using | 82 |
| abstract_inverted_index.work, | 46 |
| abstract_inverted_index.works | 57 |
| abstract_inverted_index.across | 96 |
| abstract_inverted_index.better | 134 |
| abstract_inverted_index.costs. | 123 |
| abstract_inverted_index.domain | 17 |
| abstract_inverted_index.entity | 3, 26, 69, 102 |
| abstract_inverted_index.models | 11, 117 |
| abstract_inverted_index.prompt | 83 |
| abstract_inverted_index.system | 55 |
| abstract_inverted_index.types. | 27 |
| abstract_inverted_index.Unified | 53 |
| abstract_inverted_index.achieve | 130 |
| abstract_inverted_index.dataset | 34 |
| abstract_inverted_index.domains | 62 |
| abstract_inverted_index.focuses | 7 |
| abstract_inverted_index.jointly | 94 |
| abstract_inverted_index.limited | 22 |
| abstract_inverted_index.methods | 139 |
| abstract_inverted_index.perform | 145 |
| abstract_inverted_index.present | 48 |
| abstract_inverted_index.reduced | 120 |
| abstract_inverted_index.related | 25 |
| abstract_inverted_index.results | 105 |
| abstract_inverted_index.stored. | 43 |
| abstract_inverted_index.studies | 150 |
| abstract_inverted_index.support | 152 |
| abstract_inverted_index.trained | 41 |
| abstract_inverted_index.ablation | 149 |
| abstract_inverted_index.analysis | 154 |
| abstract_inverted_index.approach | 89 |
| abstract_inverted_index.benefits | 113 |
| abstract_inverted_index.compared | 114 |
| abstract_inverted_index.corpora, | 98 |
| abstract_inverted_index.in-depth | 153 |
| abstract_inverted_index.multiple | 97 |
| abstract_inverted_index.requires | 35 |
| abstract_inverted_index.research | 6 |
| abstract_inverted_index.component | 157 |
| abstract_inverted_index.datasets. | 142 |
| abstract_inverted_index.different | 61 |
| abstract_inverted_index.interest, | 19 |
| abstract_inverted_index.learning, | 84 |
| abstract_inverted_index.on-demand | 101 |
| abstract_inverted_index.possible. | 80 |
| abstract_inverted_index.recognise | 65 |
| abstract_inverted_index.deployment | 122 |
| abstract_inverted_index.developing | 9 |
| abstract_inverted_index.prediction | 112 |
| abstract_inverted_index.PUnifiedNER | 85, 108, 128 |
| abstract_inverted_index.competitive | 131 |
| abstract_inverted_index.frustrating | 30 |
| abstract_inverted_index.intelligent | 100 |
| abstract_inverted_index.model---the | 51 |
| abstract_inverted_index.performance | 126, 135 |
| abstract_inverted_index.recognition | 4 |
| abstract_inverted_index.significant | 111 |
| abstract_inverted_index.Experimental | 104 |
| abstract_inverted_index.Furthermore, | 124 |
| abstract_inverted_index.PUnifiedNER. | 159 |
| abstract_inverted_index.implementing | 99 |
| abstract_inverted_index.impressively | 119 |
| abstract_inverted_index.recognition. | 103 |
| abstract_inverted_index.``versatile'' | 50 |
| abstract_inverted_index.comprehensive | 146 |
| abstract_inverted_index.theoretically | 73 |
| abstract_inverted_index.Prompting-based | 52 |
| abstract_inverted_index.domain-specific | 138 |
| abstract_inverted_index.simultaneously, | 71 |
| abstract_inverted_index.dataset-specific | 10, 116 |
| abstract_inverted_index.state-of-the-art | 137 |
| abstract_inverted_index.(PUnifiedNER)---that | 56 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.73944763 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |