Purity of generalized affine Springer fibers from generic planar curve singularities Article Swipe
Taiwang Deng
,
Tao Su
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.20800
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.20800
We prove the cohomological purity of punctual Hilbert schemes of points on generic irreducible planar curve singularities, by constructing an explicit affine paving. Via their identification with generalized $GL_N$-affine Springer fibers attached to the direct sum of the adjoint and standard representations, this establishes a new case of the purity conjecture for generalized affine Springer fibers. The combinatorics of the paving - cell indices and dimensions - are controlled by $(dn,dm)$-Dyck paths extending results of Gorsky-Mazin-Oblomkov on compactified Jacobians. As a byproduct, we also give a simpler proof of their bijection between admissible $(dn,dm)$-invariant subsets and $(dn,dm)$-Dyck paths.
Related Topics
Concepts
No concepts available.
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.20800
- https://arxiv.org/pdf/2509.20800
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414789364
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414789364Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.20800Digital Object Identifier
- Title
-
Purity of generalized affine Springer fibers from generic planar curve singularitiesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-25Full publication date if available
- Authors
-
Taiwang Deng, Tao SuList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.20800Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.20800Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.20800Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414789364 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.20800 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.20800 |
| ids.openalex | https://openalex.org/W4414789364 |
| fwci | |
| type | preprint |
| title | Purity of generalized affine Springer fibers from generic planar curve singularities |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10061 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9897000193595886 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2608 |
| topics[0].subfield.display_name | Geometry and Topology |
| topics[0].display_name | Algebraic Geometry and Number Theory |
| topics[1].id | https://openalex.org/T11680 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9894000291824341 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2610 |
| topics[1].subfield.display_name | Mathematical Physics |
| topics[1].display_name | Advanced Algebra and Geometry |
| topics[2].id | https://openalex.org/T10229 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.982200026512146 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2604 |
| topics[2].subfield.display_name | Applied Mathematics |
| topics[2].display_name | Geometric Analysis and Curvature Flows |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.20800 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.20800 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.20800 |
| locations[1].id | doi:10.48550/arxiv.2509.20800 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.20800 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5015998549 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Taiwang Deng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deng, Taiwang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5111279596 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Tao Su |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Su, Tao |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.20800 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Purity of generalized affine Springer fibers from generic planar curve singularities |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10061 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9897000193595886 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2608 |
| primary_topic.subfield.display_name | Geometry and Topology |
| primary_topic.display_name | Algebraic Geometry and Number Theory |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.20800 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.20800 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.20800 |
| primary_location.id | pmh:oai:arXiv.org:2509.20800 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.20800 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.20800 |
| publication_date | 2025-09-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 61, 66 |
| abstract_inverted_index.a | 44, 80, 85 |
| abstract_inverted_index.As | 79 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 19 |
| abstract_inverted_index.by | 17, 69 |
| abstract_inverted_index.of | 5, 9, 36, 47, 58, 74, 88 |
| abstract_inverted_index.on | 11, 76 |
| abstract_inverted_index.to | 32 |
| abstract_inverted_index.we | 82 |
| abstract_inverted_index.The | 56 |
| abstract_inverted_index.Via | 23 |
| abstract_inverted_index.and | 39, 64, 95 |
| abstract_inverted_index.are | 67 |
| abstract_inverted_index.for | 51 |
| abstract_inverted_index.new | 45 |
| abstract_inverted_index.sum | 35 |
| abstract_inverted_index.the | 2, 33, 37, 48, 59 |
| abstract_inverted_index.also | 83 |
| abstract_inverted_index.case | 46 |
| abstract_inverted_index.cell | 62 |
| abstract_inverted_index.give | 84 |
| abstract_inverted_index.this | 42 |
| abstract_inverted_index.with | 26 |
| abstract_inverted_index.curve | 15 |
| abstract_inverted_index.paths | 71 |
| abstract_inverted_index.proof | 87 |
| abstract_inverted_index.prove | 1 |
| abstract_inverted_index.their | 24, 89 |
| abstract_inverted_index.affine | 21, 53 |
| abstract_inverted_index.direct | 34 |
| abstract_inverted_index.fibers | 30 |
| abstract_inverted_index.paths. | 97 |
| abstract_inverted_index.paving | 60 |
| abstract_inverted_index.planar | 14 |
| abstract_inverted_index.points | 10 |
| abstract_inverted_index.purity | 4, 49 |
| abstract_inverted_index.Hilbert | 7 |
| abstract_inverted_index.adjoint | 38 |
| abstract_inverted_index.between | 91 |
| abstract_inverted_index.fibers. | 55 |
| abstract_inverted_index.generic | 12 |
| abstract_inverted_index.indices | 63 |
| abstract_inverted_index.paving. | 22 |
| abstract_inverted_index.results | 73 |
| abstract_inverted_index.schemes | 8 |
| abstract_inverted_index.simpler | 86 |
| abstract_inverted_index.subsets | 94 |
| abstract_inverted_index.Springer | 29, 54 |
| abstract_inverted_index.attached | 31 |
| abstract_inverted_index.explicit | 20 |
| abstract_inverted_index.punctual | 6 |
| abstract_inverted_index.standard | 40 |
| abstract_inverted_index.bijection | 90 |
| abstract_inverted_index.extending | 72 |
| abstract_inverted_index.Jacobians. | 78 |
| abstract_inverted_index.admissible | 92 |
| abstract_inverted_index.byproduct, | 81 |
| abstract_inverted_index.conjecture | 50 |
| abstract_inverted_index.controlled | 68 |
| abstract_inverted_index.dimensions | 65 |
| abstract_inverted_index.establishes | 43 |
| abstract_inverted_index.generalized | 27, 52 |
| abstract_inverted_index.irreducible | 13 |
| abstract_inverted_index.compactified | 77 |
| abstract_inverted_index.constructing | 18 |
| abstract_inverted_index.$GL_N$-affine | 28 |
| abstract_inverted_index.cohomological | 3 |
| abstract_inverted_index.combinatorics | 57 |
| abstract_inverted_index.$(dn,dm)$-Dyck | 70, 96 |
| abstract_inverted_index.identification | 25 |
| abstract_inverted_index.singularities, | 16 |
| abstract_inverted_index.representations, | 41 |
| abstract_inverted_index.$(dn,dm)$-invariant | 93 |
| abstract_inverted_index.Gorsky-Mazin-Oblomkov | 75 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |