Pyro: Deep Universal Probabilistic Programming Article Swipe
Eli Bingham
,
Jonathan P. Chen
,
Martin Jankowiak
,
Fritz Obermeyer
,
Neeraj Pradhan
,
Theofanis Karaletsos
,
Rohit Singh
,
Paul Szerlip
,
Paul Horsfall
,
Noah D. Goodman
·
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1810.09538
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1810.09538
Pyro is a probabilistic programming language built on Python as a platform for developing advanced probabilistic models in AI research. To scale to large datasets and high-dimensional models, Pyro uses stochastic variational inference algorithms and probability distributions built on top of PyTorch, a modern GPU-accelerated deep learning framework. To accommodate complex or model-specific algorithmic behavior, Pyro leverages Poutine, a library of composable building blocks for modifying the behavior of probabilistic programs.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1810.09538
- https://arxiv.org/pdf/1810.09538
- OA Status
- green
- Cited By
- 589
- References
- 9
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2897613819
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2897613819Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1810.09538Digital Object Identifier
- Title
-
Pyro: Deep Universal Probabilistic ProgrammingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-10-18Full publication date if available
- Authors
-
Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, Noah D. GoodmanList of authors in order
- Landing page
-
https://arxiv.org/abs/1810.09538Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1810.09538Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1810.09538Direct OA link when available
- Concepts
-
Python (programming language), Probabilistic logic, Computer science, Inference, Artificial intelligence, Deep learning, Theoretical computer science, Programming paradigm, Programming language, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
589Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 66, 2024: 119, 2023: 143, 2022: 94, 2021: 82Per-year citation counts (last 5 years)
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2897613819 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1810.09538 |
| ids.doi | https://doi.org/10.48550/arxiv.1810.09538 |
| ids.mag | 2897613819 |
| ids.openalex | https://openalex.org/W2897613819 |
| fwci | |
| type | preprint |
| title | Pyro: Deep Universal Probabilistic Programming |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9865000247955322 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T13650 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9865000247955322 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Computational Physics and Python Applications |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9787999987602234 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C519991488 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8621013164520264 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q28865 |
| concepts[0].display_name | Python (programming language) |
| concepts[1].id | https://openalex.org/C49937458 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8382055163383484 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[1].display_name | Probabilistic logic |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7060580253601074 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776214188 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5580657124519348 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[3].display_name | Inference |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5024464130401611 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47507041692733765 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C80444323 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4383580684661865 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[6].display_name | Theoretical computer science |
| concepts[7].id | https://openalex.org/C34165917 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41139352321624756 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q188267 |
| concepts[7].display_name | Programming paradigm |
| concepts[8].id | https://openalex.org/C199360897 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3421843945980072 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[8].display_name | Programming language |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33311203122138977 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/python |
| keywords[0].score | 0.8621013164520264 |
| keywords[0].display_name | Python (programming language) |
| keywords[1].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[1].score | 0.8382055163383484 |
| keywords[1].display_name | Probabilistic logic |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7060580253601074 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/inference |
| keywords[3].score | 0.5580657124519348 |
| keywords[3].display_name | Inference |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5024464130401611 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.47507041692733765 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[6].score | 0.4383580684661865 |
| keywords[6].display_name | Theoretical computer science |
| keywords[7].id | https://openalex.org/keywords/programming-paradigm |
| keywords[7].score | 0.41139352321624756 |
| keywords[7].display_name | Programming paradigm |
| keywords[8].id | https://openalex.org/keywords/programming-language |
| keywords[8].score | 0.3421843945980072 |
| keywords[8].display_name | Programming language |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.33311203122138977 |
| keywords[9].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1810.09538 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1810.09538 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1810.09538 |
| locations[1].id | mag:2897613819 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/1810.09538 |
| locations[2].id | doi:10.48550/arxiv.1810.09538 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1810.09538 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5078914058 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Eli Bingham |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2946016260 |
| authorships[0].affiliations[0].raw_affiliation_string | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[0].institutions[0].id | https://openalex.org/I2946016260 |
| authorships[0].institutions[0].ror | https://ror.org/05vm0ed18 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I2946016260 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Uber AI (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Eli Bingham |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[1].author.id | https://openalex.org/A5051958669 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jonathan P. Chen |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2946016260 |
| authorships[1].affiliations[0].raw_affiliation_string | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[1].institutions[0].id | https://openalex.org/I2946016260 |
| authorships[1].institutions[0].ror | https://ror.org/05vm0ed18 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I2946016260 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Uber AI (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jonathan P. Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[2].author.id | https://openalex.org/A5054350362 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1724-0436 |
| authorships[2].author.display_name | Martin Jankowiak |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2946016260 |
| authorships[2].affiliations[0].raw_affiliation_string | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[2].institutions[0].id | https://openalex.org/I2946016260 |
| authorships[2].institutions[0].ror | https://ror.org/05vm0ed18 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I2946016260 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Uber AI (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Martin Jankowiak |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[3].author.id | https://openalex.org/A5091084994 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Fritz Obermeyer |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2946016260 |
| authorships[3].affiliations[0].raw_affiliation_string | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[3].institutions[0].id | https://openalex.org/I2946016260 |
| authorships[3].institutions[0].ror | https://ror.org/05vm0ed18 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I2946016260 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Uber AI (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fritz Obermeyer |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[4].author.id | https://openalex.org/A5059712957 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Neeraj Pradhan |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2946016260 |
| authorships[4].affiliations[0].raw_affiliation_string | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[4].institutions[0].id | https://openalex.org/I2946016260 |
| authorships[4].institutions[0].ror | https://ror.org/05vm0ed18 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I2946016260 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Uber AI (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Neeraj Pradhan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[5].author.id | https://openalex.org/A5064498575 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0296-3092 |
| authorships[5].author.display_name | Theofanis Karaletsos |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2946016260 |
| authorships[5].affiliations[0].raw_affiliation_string | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[5].institutions[0].id | https://openalex.org/I2946016260 |
| authorships[5].institutions[0].ror | https://ror.org/05vm0ed18 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I2946016260 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Uber AI (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Theofanis Karaletsos |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[6].author.id | https://openalex.org/A5081688191 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4084-7340 |
| authorships[6].author.display_name | Rohit Singh |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I2946016260 |
| authorships[6].affiliations[0].raw_affiliation_string | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[6].institutions[0].id | https://openalex.org/I2946016260 |
| authorships[6].institutions[0].ror | https://ror.org/05vm0ed18 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I2946016260 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Uber AI (United States) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Rohit Singh |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[7].author.id | https://openalex.org/A5079283522 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Paul Szerlip |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I2946016260 |
| authorships[7].affiliations[0].raw_affiliation_string | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[7].institutions[0].id | https://openalex.org/I2946016260 |
| authorships[7].institutions[0].ror | https://ror.org/05vm0ed18 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I2946016260 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Uber AI (United States) |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Paul Szerlip |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Uber AI Labs, Uber Technologies, Inc., San Francisco, CA#TAB# |
| authorships[8].author.id | https://openalex.org/A5019270134 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Paul Horsfall |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I2946016260, https://openalex.org/I97018004 |
| authorships[8].affiliations[0].raw_affiliation_string | Uber AI Labs, San Francisco, CA and Stanford University, Stanford, CA#TAB# |
| authorships[8].institutions[0].id | https://openalex.org/I97018004 |
| authorships[8].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Stanford University |
| authorships[8].institutions[1].id | https://openalex.org/I2946016260 |
| authorships[8].institutions[1].ror | https://ror.org/05vm0ed18 |
| authorships[8].institutions[1].type | company |
| authorships[8].institutions[1].lineage | https://openalex.org/I2946016260 |
| authorships[8].institutions[1].country_code | US |
| authorships[8].institutions[1].display_name | Uber AI (United States) |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Paul Horsfall |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Uber AI Labs, San Francisco, CA and Stanford University, Stanford, CA#TAB# |
| authorships[9].author.id | https://openalex.org/A5001961716 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-9176-8802 |
| authorships[9].author.display_name | Noah D. Goodman |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I2946016260, https://openalex.org/I97018004 |
| authorships[9].affiliations[0].raw_affiliation_string | Uber AI Labs, San Francisco, CA and Stanford University, Stanford, CA#TAB# |
| authorships[9].institutions[0].id | https://openalex.org/I97018004 |
| authorships[9].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Stanford University |
| authorships[9].institutions[1].id | https://openalex.org/I2946016260 |
| authorships[9].institutions[1].ror | https://ror.org/05vm0ed18 |
| authorships[9].institutions[1].type | company |
| authorships[9].institutions[1].lineage | https://openalex.org/I2946016260 |
| authorships[9].institutions[1].country_code | US |
| authorships[9].institutions[1].display_name | Uber AI (United States) |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Noah D. Goodman |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Uber AI Labs, San Francisco, CA and Stanford University, Stanford, CA#TAB# |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1810.09538 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Pyro: Deep Universal Probabilistic Programming |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9865000247955322 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W2963977107, https://openalex.org/W2951004968, https://openalex.org/W2577537660, https://openalex.org/W2899771611, https://openalex.org/W2099471712, https://openalex.org/W1909320841, https://openalex.org/W1522301498, https://openalex.org/W1906598733, https://openalex.org/W1880262756, https://openalex.org/W2963173382, https://openalex.org/W2962994101, https://openalex.org/W2166851633, https://openalex.org/W2119717200, https://openalex.org/W2112796928, https://openalex.org/W2064675550, https://openalex.org/W2745750691, https://openalex.org/W3176891121, https://openalex.org/W2327222151, https://openalex.org/W331726321, https://openalex.org/W3162977939 |
| cited_by_count | 589 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 66 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 119 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 143 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 94 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 82 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 52 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 28 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 3 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1810.09538 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1810.09538 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1810.09538 |
| primary_location.id | pmh:oai:arXiv.org:1810.09538 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1810.09538 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1810.09538 |
| publication_date | 2018-10-18 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2963977107, https://openalex.org/W2808618339, https://openalex.org/W1890754682, https://openalex.org/W1959608418, https://openalex.org/W2587284713, https://openalex.org/W2529448179, https://openalex.org/W2577537660, https://openalex.org/W3037484309, https://openalex.org/W2621357189 |
| referenced_works_count | 9 |
| abstract_inverted_index.a | 2, 10, 42, 58 |
| abstract_inverted_index.AI | 18 |
| abstract_inverted_index.To | 20, 48 |
| abstract_inverted_index.as | 9 |
| abstract_inverted_index.in | 17 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.of | 40, 60, 68 |
| abstract_inverted_index.on | 7, 38 |
| abstract_inverted_index.or | 51 |
| abstract_inverted_index.to | 22 |
| abstract_inverted_index.and | 25, 34 |
| abstract_inverted_index.for | 12, 64 |
| abstract_inverted_index.the | 66 |
| abstract_inverted_index.top | 39 |
| abstract_inverted_index.Pyro | 0, 28, 55 |
| abstract_inverted_index.deep | 45 |
| abstract_inverted_index.uses | 29 |
| abstract_inverted_index.built | 6, 37 |
| abstract_inverted_index.large | 23 |
| abstract_inverted_index.scale | 21 |
| abstract_inverted_index.Python | 8 |
| abstract_inverted_index.blocks | 63 |
| abstract_inverted_index.models | 16 |
| abstract_inverted_index.modern | 43 |
| abstract_inverted_index.complex | 50 |
| abstract_inverted_index.library | 59 |
| abstract_inverted_index.models, | 27 |
| abstract_inverted_index.Poutine, | 57 |
| abstract_inverted_index.PyTorch, | 41 |
| abstract_inverted_index.advanced | 14 |
| abstract_inverted_index.behavior | 67 |
| abstract_inverted_index.building | 62 |
| abstract_inverted_index.datasets | 24 |
| abstract_inverted_index.language | 5 |
| abstract_inverted_index.learning | 46 |
| abstract_inverted_index.platform | 11 |
| abstract_inverted_index.behavior, | 54 |
| abstract_inverted_index.inference | 32 |
| abstract_inverted_index.leverages | 56 |
| abstract_inverted_index.modifying | 65 |
| abstract_inverted_index.programs. | 70 |
| abstract_inverted_index.research. | 19 |
| abstract_inverted_index.algorithms | 33 |
| abstract_inverted_index.composable | 61 |
| abstract_inverted_index.developing | 13 |
| abstract_inverted_index.framework. | 47 |
| abstract_inverted_index.stochastic | 30 |
| abstract_inverted_index.accommodate | 49 |
| abstract_inverted_index.algorithmic | 53 |
| abstract_inverted_index.probability | 35 |
| abstract_inverted_index.programming | 4 |
| abstract_inverted_index.variational | 31 |
| abstract_inverted_index.distributions | 36 |
| abstract_inverted_index.probabilistic | 3, 15, 69 |
| abstract_inverted_index.model-specific | 52 |
| abstract_inverted_index.GPU-accelerated | 44 |
| abstract_inverted_index.high-dimensional | 26 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |