Q-Cluster: Quantum Error Mitigation Through Noise-Aware Unsupervised Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.10801
Quantum error mitigation (QEM) is critical in reducing the impact of noise in the pre-fault-tolerant era, and is expected to complement error correction in fault-tolerant quantum computing (FTQC). In this paper, we propose a novel QEM approach, Q-Cluster, that uses unsupervised learning (clustering) to reshape the measured bit-string distribution. Our approach starts with a simplified bit-flip noise model. It first performs clustering on noisy measurement results, i.e., bit-strings, based on the Hamming distance. The centroid of each cluster is calculated using a qubit-wise majority vote. Next, the noisy distribution is adjusted with the clustering outcomes and the bit-flip error rates using Bayesian inference. Our simulation results show that Q-Cluster can mitigate high noise rates (up to 40% per qubit) with the simple bit-flip noise model. However, real quantum computers do not fit such a simple noise model. To address the problem, we (a) apply Pauli twirling to tailor the complex noise channels to Pauli errors, and (b) employ a machine learning model, ExtraTrees regressor, to estimate an effective bit-flip error rate using a feature vector consisting of machine calibration data (gate & measurement error rates), circuit features (number of qubits, numbers of different types of gates, etc.) and the shape of the noisy distribution (entropy). Our experimental results show that our proposed Q-Cluster scheme improves the fidelity by a factor of 1.46x, on average, compared to the unmitigated output distribution, for a set of low-entropy benchmarks on five different IBM quantum machines. Our approach outperforms the state-of-art QEM approaches M3 [24], Hammer [35], and QBEEP [33] by 1.29x, 1.47x, and 2.65x, respectively.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.10801
- https://arxiv.org/pdf/2504.10801
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416053876
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416053876Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.10801Digital Object Identifier
- Title
-
Q-Cluster: Quantum Error Mitigation Through Noise-Aware Unsupervised LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-15Full publication date if available
- Authors
-
Hrushikesh Pramod Patil, Dror Baron, Huiyang ZhouList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.10801Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.10801Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.10801Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416053876 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.10801 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.10801 |
| ids.openalex | https://openalex.org/W4416053876 |
| fwci | |
| type | preprint |
| title | Q-Cluster: Quantum Error Mitigation Through Noise-Aware Unsupervised Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.10801 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.10801 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.10801 |
| locations[1].id | doi:10.48550/arxiv.2504.10801 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.10801 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5044303404 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7565-6248 |
| authorships[0].author.display_name | Hrushikesh Pramod Patil |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Patil, Hrushikesh Pramod |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037316256 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6371-8496 |
| authorships[1].author.display_name | Dror Baron |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Baron, Dror |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5072755725 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Huiyang Zhou |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zhou, Huiyang |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.10801 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Q-Cluster: Quantum Error Mitigation Through Noise-Aware Unsupervised Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-01T00:03:43.161839 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.10801 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.10801 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.10801 |
| primary_location.id | pmh:oai:arXiv.org:2504.10801 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.10801 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.10801 |
| publication_date | 2025-04-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 33, 53, 81, 133, 158, 172, 218, 231 |
| abstract_inverted_index.In | 28 |
| abstract_inverted_index.It | 58 |
| abstract_inverted_index.M3 | 249 |
| abstract_inverted_index.To | 137 |
| abstract_inverted_index.an | 166 |
| abstract_inverted_index.by | 217, 256 |
| abstract_inverted_index.do | 129 |
| abstract_inverted_index.in | 6, 12, 23 |
| abstract_inverted_index.is | 4, 17, 78, 89 |
| abstract_inverted_index.of | 10, 75, 176, 188, 191, 194, 200, 220, 233 |
| abstract_inverted_index.on | 62, 69, 222, 236 |
| abstract_inverted_index.to | 19, 43, 115, 146, 152, 164, 225 |
| abstract_inverted_index.we | 31, 141 |
| abstract_inverted_index.(a) | 142 |
| abstract_inverted_index.(b) | 156 |
| abstract_inverted_index.(up | 114 |
| abstract_inverted_index.40% | 116 |
| abstract_inverted_index.IBM | 239 |
| abstract_inverted_index.Our | 49, 103, 205, 242 |
| abstract_inverted_index.QEM | 35, 247 |
| abstract_inverted_index.The | 73 |
| abstract_inverted_index.and | 16, 95, 155, 197, 253, 259 |
| abstract_inverted_index.can | 109 |
| abstract_inverted_index.fit | 131 |
| abstract_inverted_index.for | 230 |
| abstract_inverted_index.not | 130 |
| abstract_inverted_index.our | 210 |
| abstract_inverted_index.per | 117 |
| abstract_inverted_index.set | 232 |
| abstract_inverted_index.the | 8, 13, 45, 70, 86, 92, 96, 120, 139, 148, 198, 201, 215, 226, 245 |
| abstract_inverted_index.[33] | 255 |
| abstract_inverted_index.data | 179 |
| abstract_inverted_index.each | 76 |
| abstract_inverted_index.era, | 15 |
| abstract_inverted_index.five | 237 |
| abstract_inverted_index.high | 111 |
| abstract_inverted_index.rate | 170 |
| abstract_inverted_index.real | 126 |
| abstract_inverted_index.show | 106, 208 |
| abstract_inverted_index.such | 132 |
| abstract_inverted_index.that | 38, 107, 209 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.uses | 39 |
| abstract_inverted_index.with | 52, 91, 119 |
| abstract_inverted_index.& | 181 |
| abstract_inverted_index.(QEM) | 3 |
| abstract_inverted_index.(gate | 180 |
| abstract_inverted_index.Next, | 85 |
| abstract_inverted_index.Pauli | 144, 153 |
| abstract_inverted_index.QBEEP | 254 |
| abstract_inverted_index.[24], | 250 |
| abstract_inverted_index.[35], | 252 |
| abstract_inverted_index.apply | 143 |
| abstract_inverted_index.based | 68 |
| abstract_inverted_index.error | 1, 21, 98, 169, 183 |
| abstract_inverted_index.etc.) | 196 |
| abstract_inverted_index.first | 59 |
| abstract_inverted_index.i.e., | 66 |
| abstract_inverted_index.noise | 11, 56, 112, 123, 135, 150 |
| abstract_inverted_index.noisy | 63, 87, 202 |
| abstract_inverted_index.novel | 34 |
| abstract_inverted_index.rates | 99, 113 |
| abstract_inverted_index.shape | 199 |
| abstract_inverted_index.types | 193 |
| abstract_inverted_index.using | 80, 100, 171 |
| abstract_inverted_index.vote. | 84 |
| abstract_inverted_index.1.29x, | 257 |
| abstract_inverted_index.1.46x, | 221 |
| abstract_inverted_index.1.47x, | 258 |
| abstract_inverted_index.2.65x, | 260 |
| abstract_inverted_index.Hammer | 251 |
| abstract_inverted_index.employ | 157 |
| abstract_inverted_index.factor | 219 |
| abstract_inverted_index.gates, | 195 |
| abstract_inverted_index.impact | 9 |
| abstract_inverted_index.model, | 161 |
| abstract_inverted_index.model. | 57, 124, 136 |
| abstract_inverted_index.output | 228 |
| abstract_inverted_index.paper, | 30 |
| abstract_inverted_index.qubit) | 118 |
| abstract_inverted_index.scheme | 213 |
| abstract_inverted_index.simple | 121, 134 |
| abstract_inverted_index.starts | 51 |
| abstract_inverted_index.tailor | 147 |
| abstract_inverted_index.vector | 174 |
| abstract_inverted_index.(FTQC). | 27 |
| abstract_inverted_index.(number | 187 |
| abstract_inverted_index.Hamming | 71 |
| abstract_inverted_index.Quantum | 0 |
| abstract_inverted_index.address | 138 |
| abstract_inverted_index.circuit | 185 |
| abstract_inverted_index.cluster | 77 |
| abstract_inverted_index.complex | 149 |
| abstract_inverted_index.errors, | 154 |
| abstract_inverted_index.feature | 173 |
| abstract_inverted_index.machine | 159, 177 |
| abstract_inverted_index.numbers | 190 |
| abstract_inverted_index.propose | 32 |
| abstract_inverted_index.quantum | 25, 127, 240 |
| abstract_inverted_index.qubits, | 189 |
| abstract_inverted_index.rates), | 184 |
| abstract_inverted_index.reshape | 44 |
| abstract_inverted_index.results | 105, 207 |
| abstract_inverted_index.Bayesian | 101 |
| abstract_inverted_index.However, | 125 |
| abstract_inverted_index.adjusted | 90 |
| abstract_inverted_index.approach | 50, 243 |
| abstract_inverted_index.average, | 223 |
| abstract_inverted_index.bit-flip | 55, 97, 122, 168 |
| abstract_inverted_index.centroid | 74 |
| abstract_inverted_index.channels | 151 |
| abstract_inverted_index.compared | 224 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.estimate | 165 |
| abstract_inverted_index.expected | 18 |
| abstract_inverted_index.features | 186 |
| abstract_inverted_index.fidelity | 216 |
| abstract_inverted_index.improves | 214 |
| abstract_inverted_index.learning | 41, 160 |
| abstract_inverted_index.majority | 83 |
| abstract_inverted_index.measured | 46 |
| abstract_inverted_index.mitigate | 110 |
| abstract_inverted_index.outcomes | 94 |
| abstract_inverted_index.performs | 60 |
| abstract_inverted_index.problem, | 140 |
| abstract_inverted_index.proposed | 211 |
| abstract_inverted_index.reducing | 7 |
| abstract_inverted_index.results, | 65 |
| abstract_inverted_index.twirling | 145 |
| abstract_inverted_index.Q-Cluster | 108, 212 |
| abstract_inverted_index.approach, | 36 |
| abstract_inverted_index.computers | 128 |
| abstract_inverted_index.computing | 26 |
| abstract_inverted_index.different | 192, 238 |
| abstract_inverted_index.distance. | 72 |
| abstract_inverted_index.effective | 167 |
| abstract_inverted_index.machines. | 241 |
| abstract_inverted_index.(entropy). | 204 |
| abstract_inverted_index.ExtraTrees | 162 |
| abstract_inverted_index.Q-Cluster, | 37 |
| abstract_inverted_index.approaches | 248 |
| abstract_inverted_index.benchmarks | 235 |
| abstract_inverted_index.bit-string | 47 |
| abstract_inverted_index.calculated | 79 |
| abstract_inverted_index.clustering | 61, 93 |
| abstract_inverted_index.complement | 20 |
| abstract_inverted_index.consisting | 175 |
| abstract_inverted_index.correction | 22 |
| abstract_inverted_index.inference. | 102 |
| abstract_inverted_index.mitigation | 2 |
| abstract_inverted_index.qubit-wise | 82 |
| abstract_inverted_index.regressor, | 163 |
| abstract_inverted_index.simplified | 54 |
| abstract_inverted_index.simulation | 104 |
| abstract_inverted_index.calibration | 178 |
| abstract_inverted_index.low-entropy | 234 |
| abstract_inverted_index.measurement | 64, 182 |
| abstract_inverted_index.outperforms | 244 |
| abstract_inverted_index.unmitigated | 227 |
| abstract_inverted_index.(clustering) | 42 |
| abstract_inverted_index.bit-strings, | 67 |
| abstract_inverted_index.distribution | 88, 203 |
| abstract_inverted_index.experimental | 206 |
| abstract_inverted_index.state-of-art | 246 |
| abstract_inverted_index.unsupervised | 40 |
| abstract_inverted_index.distribution, | 229 |
| abstract_inverted_index.distribution. | 48 |
| abstract_inverted_index.respectively. | 261 |
| abstract_inverted_index.fault-tolerant | 24 |
| abstract_inverted_index.pre-fault-tolerant | 14 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |