QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning? Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.12961
Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL). Previous studies have primarily addressed this issue through value decomposition methods under the centralized training with decentralized execution paradigm, where neural networks are utilized to approximate the nonlinear relationship between individual Q-values and the global Q-value. Although these approaches have achieved considerable success in various benchmark tasks, they still suffer from several limitations, including imprecise attribution of contributions, limited interpretability, and poor scalability in high-dimensional state spaces. To address these challenges, we propose a novel algorithm, \textbf{QLLM}, which facilitates the automatic construction of credit assignment functions using large language models (LLMs). Specifically, the concept of \textbf{TFCAF} is introduced, wherein the credit allocation process is represented as a direct and expressive nonlinear functional formulation. A custom-designed \textit{coder-evaluator} framework is further employed to guide the generation, verification, and refinement of executable code by LLMs, significantly mitigating issues such as hallucination and shallow reasoning during inference. Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines. Moreover, QLLM exhibits strong generalization capability and maintains compatibility with a wide range of MARL algorithms that utilize mixing networks, positioning it as a promising and versatile solution for complex multi-agent scenarios.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.12961
- https://arxiv.org/pdf/2504.12961
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414975192
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414975192Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.12961Digital Object Identifier
- Title
-
QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning?Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-17Full publication date if available
- Authors
-
Zhouyang Jiang, Bin Zhang, Airong Wei, Zhiwei XuList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.12961Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.12961Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.12961Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414975192 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.12961 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.12961 |
| ids.openalex | https://openalex.org/W4414975192 |
| fwci | |
| type | preprint |
| title | QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11995 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.7972999811172485 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1404 |
| topics[0].subfield.display_name | Management Information Systems |
| topics[0].display_name | FinTech, Crowdfunding, Digital Finance |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.12961 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | public-domain |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.12961 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.12961 |
| locations[1].id | doi:10.48550/arxiv.2504.12961 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | public-domain |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/public-domain |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.12961 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5039715506 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7754-8061 |
| authorships[0].author.display_name | Zhouyang Jiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiang, Zhouyang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100392843 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4879-0211 |
| authorships[1].author.display_name | Bin Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Bin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5084749505 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Airong Wei |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wei, Airong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100628168 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0754-5295 |
| authorships[3].author.display_name | Zhiwei Xu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xu, Zhiwei |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.12961 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-09T00:00:00 |
| display_name | QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11995 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.7972999811172485 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1404 |
| primary_topic.subfield.display_name | Management Information Systems |
| primary_topic.display_name | FinTech, Crowdfunding, Digital Finance |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.12961 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.12961 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.12961 |
| primary_location.id | pmh:oai:arXiv.org:2504.12961 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | public-domain |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.12961 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.12961 |
| publication_date | 2025-04-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 125 |
| abstract_inverted_index.a | 4, 85, 118, 183, 196 |
| abstract_inverted_index.To | 79 |
| abstract_inverted_index.as | 117, 148, 195 |
| abstract_inverted_index.by | 142 |
| abstract_inverted_index.in | 7, 55, 75 |
| abstract_inverted_index.is | 108, 115, 129 |
| abstract_inverted_index.it | 194 |
| abstract_inverted_index.of | 68, 94, 106, 139, 186 |
| abstract_inverted_index.on | 158 |
| abstract_inverted_index.to | 36, 132 |
| abstract_inverted_index.we | 83 |
| abstract_inverted_index.and | 44, 72, 120, 137, 150, 179, 198 |
| abstract_inverted_index.are | 34 |
| abstract_inverted_index.for | 201 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.the | 24, 38, 45, 91, 104, 111, 134, 165 |
| abstract_inverted_index.MARL | 161, 187 |
| abstract_inverted_index.QLLM | 174 |
| abstract_inverted_index.code | 141 |
| abstract_inverted_index.from | 62 |
| abstract_inverted_index.have | 14, 51 |
| abstract_inverted_index.poor | 73 |
| abstract_inverted_index.such | 147 |
| abstract_inverted_index.that | 164, 189 |
| abstract_inverted_index.they | 59 |
| abstract_inverted_index.this | 17 |
| abstract_inverted_index.wide | 184 |
| abstract_inverted_index.with | 27, 182 |
| abstract_inverted_index.LLMs, | 143 |
| abstract_inverted_index.guide | 133 |
| abstract_inverted_index.issue | 18 |
| abstract_inverted_index.large | 99 |
| abstract_inverted_index.novel | 86 |
| abstract_inverted_index.range | 185 |
| abstract_inverted_index.state | 77 |
| abstract_inverted_index.still | 60 |
| abstract_inverted_index.these | 49, 81 |
| abstract_inverted_index.under | 23 |
| abstract_inverted_index.using | 98 |
| abstract_inverted_index.value | 20 |
| abstract_inverted_index.where | 31 |
| abstract_inverted_index.which | 89 |
| abstract_inverted_index.Credit | 0 |
| abstract_inverted_index.credit | 95, 112 |
| abstract_inverted_index.direct | 119 |
| abstract_inverted_index.during | 153 |
| abstract_inverted_index.global | 46 |
| abstract_inverted_index.issues | 146 |
| abstract_inverted_index.method | 167 |
| abstract_inverted_index.mixing | 191 |
| abstract_inverted_index.models | 101 |
| abstract_inverted_index.neural | 32 |
| abstract_inverted_index.strong | 176 |
| abstract_inverted_index.suffer | 61 |
| abstract_inverted_index.tasks, | 58 |
| abstract_inverted_index.(LLMs). | 102 |
| abstract_inverted_index.(MARL). | 11 |
| abstract_inverted_index.address | 80 |
| abstract_inverted_index.between | 41 |
| abstract_inverted_index.complex | 202 |
| abstract_inverted_index.concept | 105 |
| abstract_inverted_index.further | 130 |
| abstract_inverted_index.limited | 70 |
| abstract_inverted_index.methods | 22 |
| abstract_inverted_index.process | 114 |
| abstract_inverted_index.propose | 84 |
| abstract_inverted_index.several | 63, 159 |
| abstract_inverted_index.shallow | 151 |
| abstract_inverted_index.spaces. | 78 |
| abstract_inverted_index.studies | 13 |
| abstract_inverted_index.success | 54 |
| abstract_inverted_index.through | 19 |
| abstract_inverted_index.utilize | 190 |
| abstract_inverted_index.various | 56 |
| abstract_inverted_index.wherein | 110 |
| abstract_inverted_index.Although | 48 |
| abstract_inverted_index.Previous | 12 |
| abstract_inverted_index.Q-value. | 47 |
| abstract_inverted_index.Q-values | 43 |
| abstract_inverted_index.achieved | 52 |
| abstract_inverted_index.employed | 131 |
| abstract_inverted_index.exhibits | 175 |
| abstract_inverted_index.existing | 170 |
| abstract_inverted_index.language | 100 |
| abstract_inverted_index.learning | 10 |
| abstract_inverted_index.networks | 33 |
| abstract_inverted_index.proposed | 166 |
| abstract_inverted_index.remained | 3 |
| abstract_inverted_index.solution | 200 |
| abstract_inverted_index.standard | 160 |
| abstract_inverted_index.training | 26 |
| abstract_inverted_index.utilized | 35 |
| abstract_inverted_index.Extensive | 155 |
| abstract_inverted_index.Moreover, | 173 |
| abstract_inverted_index.addressed | 16 |
| abstract_inverted_index.automatic | 92 |
| abstract_inverted_index.benchmark | 57 |
| abstract_inverted_index.challenge | 6 |
| abstract_inverted_index.conducted | 157 |
| abstract_inverted_index.execution | 29 |
| abstract_inverted_index.framework | 128 |
| abstract_inverted_index.functions | 97 |
| abstract_inverted_index.imprecise | 66 |
| abstract_inverted_index.including | 65 |
| abstract_inverted_index.maintains | 180 |
| abstract_inverted_index.networks, | 192 |
| abstract_inverted_index.nonlinear | 39, 122 |
| abstract_inverted_index.paradigm, | 30 |
| abstract_inverted_index.primarily | 15 |
| abstract_inverted_index.promising | 197 |
| abstract_inverted_index.reasoning | 152 |
| abstract_inverted_index.versatile | 199 |
| abstract_inverted_index.algorithm, | 87 |
| abstract_inverted_index.algorithms | 188 |
| abstract_inverted_index.allocation | 113 |
| abstract_inverted_index.approaches | 50 |
| abstract_inverted_index.assignment | 1, 96 |
| abstract_inverted_index.baselines. | 172 |
| abstract_inverted_index.benchmarks | 162 |
| abstract_inverted_index.capability | 178 |
| abstract_inverted_index.executable | 140 |
| abstract_inverted_index.expressive | 121 |
| abstract_inverted_index.functional | 123 |
| abstract_inverted_index.individual | 42 |
| abstract_inverted_index.inference. | 154 |
| abstract_inverted_index.mitigating | 145 |
| abstract_inverted_index.refinement | 138 |
| abstract_inverted_index.scenarios. | 204 |
| abstract_inverted_index.approximate | 37 |
| abstract_inverted_index.attribution | 67 |
| abstract_inverted_index.centralized | 25 |
| abstract_inverted_index.challenges, | 82 |
| abstract_inverted_index.demonstrate | 163 |
| abstract_inverted_index.experiments | 156 |
| abstract_inverted_index.facilitates | 90 |
| abstract_inverted_index.fundamental | 5 |
| abstract_inverted_index.generation, | 135 |
| abstract_inverted_index.introduced, | 109 |
| abstract_inverted_index.multi-agent | 8, 203 |
| abstract_inverted_index.outperforms | 169 |
| abstract_inverted_index.positioning | 193 |
| abstract_inverted_index.represented | 116 |
| abstract_inverted_index.scalability | 74 |
| abstract_inverted_index.considerable | 53 |
| abstract_inverted_index.consistently | 168 |
| abstract_inverted_index.construction | 93 |
| abstract_inverted_index.formulation. | 124 |
| abstract_inverted_index.limitations, | 64 |
| abstract_inverted_index.relationship | 40 |
| abstract_inverted_index.Specifically, | 103 |
| abstract_inverted_index.compatibility | 181 |
| abstract_inverted_index.decentralized | 28 |
| abstract_inverted_index.decomposition | 21 |
| abstract_inverted_index.hallucination | 149 |
| abstract_inverted_index.reinforcement | 9 |
| abstract_inverted_index.significantly | 144 |
| abstract_inverted_index.verification, | 136 |
| abstract_inverted_index.\textbf{QLLM}, | 88 |
| abstract_inverted_index.\textbf{TFCAF} | 107 |
| abstract_inverted_index.contributions, | 69 |
| abstract_inverted_index.generalization | 177 |
| abstract_inverted_index.custom-designed | 126 |
| abstract_inverted_index.high-dimensional | 76 |
| abstract_inverted_index.state-of-the-art | 171 |
| abstract_inverted_index.interpretability, | 71 |
| abstract_inverted_index.\textit{coder-evaluator} | 127 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |