QoS-Aware Link Adaptation for Beyond 5G Networks: A Deep Reinforcement Learning Approach Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/ojcoms.2025.3593836
Modern wireless communication systems face increasingly complex challenges due to rapidly changing channel conditions and the growing diversity of application-specific Quality of Service (QoS) requirements. Traditional link adaptation mechanisms primarily aim to maximize throughput and often lack the flexibility to support emerging applications, such as Extended Reality (XR) and Virtual Reality (VR), which demand simultaneous guarantees for high data rates, ultra low latency, and high reliability. These stringent and multidimensional QoS needs call for more intelligent and adaptive solutions. In this paper, we propose QDRLLA (QoS-aware Deep Reinforcement Learning-based Link Adaptation), a novel framework that employs deep reinforcement learning to dynamically adjust key link parameters, including modulation and coding schemes, transmission power, and subcarrier spacing, based on the QoS requirements of each application. QDRLLA learns from the environment and past observations to make informed decisions that go beyond conventional heuristic-based methods. Through extensive simulations, we demonstrate that QDRLLA significantly improves compliance with QoS targets across a range of network conditions and application types. It also improves energy efficiency by avoiding unnecessary retransmissions and optimizing resource usage. These results underscore the effectiveness of QDRLLA in supporting the complex service requirements of next-generation wireless networks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/ojcoms.2025.3593836
- OA Status
- gold
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412747727
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412747727Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/ojcoms.2025.3593836Digital Object Identifier
- Title
-
QoS-Aware Link Adaptation for Beyond 5G Networks: A Deep Reinforcement Learning ApproachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Ali Parsa, Neda Moghim, Sachin ShettyList of authors in order
- Landing page
-
https://doi.org/10.1109/ojcoms.2025.3593836Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/ojcoms.2025.3593836Direct OA link when available
- Concepts
-
Reinforcement learning, Adaptation (eye), Computer science, Link (geometry), Link adaptation, Computer network, Quality of service, Distributed computing, Artificial intelligence, Psychology, Neuroscience, Fading, Channel (broadcasting)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412747727 |
|---|---|
| doi | https://doi.org/10.1109/ojcoms.2025.3593836 |
| ids.doi | https://doi.org/10.1109/ojcoms.2025.3593836 |
| ids.openalex | https://openalex.org/W4412747727 |
| fwci | 0.0 |
| type | article |
| title | QoS-Aware Link Adaptation for Beyond 5G Networks: A Deep Reinforcement Learning Approach |
| biblio.issue | |
| biblio.volume | 6 |
| biblio.last_page | 6382 |
| biblio.first_page | 6368 |
| topics[0].id | https://openalex.org/T10148 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9696999788284302 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced MIMO Systems Optimization |
| topics[1].id | https://openalex.org/T10714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9492999911308289 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Software-Defined Networks and 5G |
| topics[2].id | https://openalex.org/T11165 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9355000257492065 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Video Quality Assessment |
| is_xpac | False |
| apc_list.value | 1750 |
| apc_list.currency | USD |
| apc_list.value_usd | 1750 |
| apc_paid.value | 1750 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1750 |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7937771081924438 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C139807058 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7207204103469849 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[1].display_name | Adaptation (eye) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6564862132072449 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2778753846 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5978211164474487 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6554239 |
| concepts[3].display_name | Link (geometry) |
| concepts[4].id | https://openalex.org/C138916503 |
| concepts[4].level | 4 |
| concepts[4].score | 0.45805251598358154 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2714551 |
| concepts[4].display_name | Link adaptation |
| concepts[5].id | https://openalex.org/C31258907 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4229784607887268 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[5].display_name | Computer network |
| concepts[6].id | https://openalex.org/C5119721 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4162943959236145 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q220501 |
| concepts[6].display_name | Quality of service |
| concepts[7].id | https://openalex.org/C120314980 |
| concepts[7].level | 1 |
| concepts[7].score | 0.389525443315506 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[7].display_name | Distributed computing |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3655407428741455 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C15744967 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2161562740802765 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[9].display_name | Psychology |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.16832062602043152 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| concepts[11].id | https://openalex.org/C81978471 |
| concepts[11].level | 3 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1196572 |
| concepts[11].display_name | Fading |
| concepts[12].id | https://openalex.org/C127162648 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[12].display_name | Channel (broadcasting) |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.7937771081924438 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/adaptation |
| keywords[1].score | 0.7207204103469849 |
| keywords[1].display_name | Adaptation (eye) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6564862132072449 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/link |
| keywords[3].score | 0.5978211164474487 |
| keywords[3].display_name | Link (geometry) |
| keywords[4].id | https://openalex.org/keywords/link-adaptation |
| keywords[4].score | 0.45805251598358154 |
| keywords[4].display_name | Link adaptation |
| keywords[5].id | https://openalex.org/keywords/computer-network |
| keywords[5].score | 0.4229784607887268 |
| keywords[5].display_name | Computer network |
| keywords[6].id | https://openalex.org/keywords/quality-of-service |
| keywords[6].score | 0.4162943959236145 |
| keywords[6].display_name | Quality of service |
| keywords[7].id | https://openalex.org/keywords/distributed-computing |
| keywords[7].score | 0.389525443315506 |
| keywords[7].display_name | Distributed computing |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3655407428741455 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/psychology |
| keywords[9].score | 0.2161562740802765 |
| keywords[9].display_name | Psychology |
| keywords[10].id | https://openalex.org/keywords/neuroscience |
| keywords[10].score | 0.16832062602043152 |
| keywords[10].display_name | Neuroscience |
| language | en |
| locations[0].id | doi:10.1109/ojcoms.2025.3593836 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202420 |
| locations[0].source.issn | 2644-125X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2644-125X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Open Journal of the Communications Society |
| locations[0].source.host_organization | https://openalex.org/P4310316002 |
| locations[0].source.host_organization_name | IEEE Communications Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310316002, https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | IEEE Communications Society, Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Open Journal of the Communications Society |
| locations[0].landing_page_url | https://doi.org/10.1109/ojcoms.2025.3593836 |
| locations[1].id | pmh:oai:doaj.org/article:d67e87f3c2f642c7b2a79f6aebe79f00 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Open Journal of the Communications Society, Vol 6, Pp 6368-6382 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/d67e87f3c2f642c7b2a79f6aebe79f00 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5011747205 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ali Parsa |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I39268498 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Engineering, University of Isfahan, Isfahan, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I39268498 |
| authorships[0].institutions[0].ror | https://ror.org/05h9t7759 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I39268498 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | University of Isfahan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ali Parsa |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Engineering, University of Isfahan, Isfahan, Iran |
| authorships[1].author.id | https://openalex.org/A5053148992 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6338-5505 |
| authorships[1].author.display_name | Neda Moghim |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I39268498 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Engineering, University of Isfahan, Isfahan, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I39268498 |
| authorships[1].institutions[0].ror | https://ror.org/05h9t7759 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I39268498 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | University of Isfahan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Neda Moghim |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Engineering, University of Isfahan, Isfahan, Iran |
| authorships[2].author.id | https://openalex.org/A5052787847 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8789-0610 |
| authorships[2].author.display_name | Sachin Shetty |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I81365321 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Secure and Intelligent Critical Systems (CSICS), Office of Enterprise Research and Innovation (OERI), Old Dominion University, VA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I81365321 |
| authorships[2].institutions[0].ror | https://ror.org/04zjtrb98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I81365321 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Old Dominion University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sachin Shetty |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Secure and Intelligent Critical Systems (CSICS), Office of Enterprise Research and Innovation (OERI), Old Dominion University, VA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/ojcoms.2025.3593836 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | QoS-Aware Link Adaptation for Beyond 5G Networks: A Deep Reinforcement Learning Approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10148 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9696999788284302 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced MIMO Systems Optimization |
| related_works | https://openalex.org/W1518185400, https://openalex.org/W3200586296, https://openalex.org/W4306904969, https://openalex.org/W4230332972, https://openalex.org/W1998033311, https://openalex.org/W4247322236, https://openalex.org/W2138720691, https://openalex.org/W4362501864, https://openalex.org/W4380318855, https://openalex.org/W1482974381 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/ojcoms.2025.3593836 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202420 |
| best_oa_location.source.issn | 2644-125X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2644-125X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Open Journal of the Communications Society |
| best_oa_location.source.host_organization | https://openalex.org/P4310316002 |
| best_oa_location.source.host_organization_name | IEEE Communications Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310316002, https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | IEEE Communications Society, Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Open Journal of the Communications Society |
| best_oa_location.landing_page_url | https://doi.org/10.1109/ojcoms.2025.3593836 |
| primary_location.id | doi:10.1109/ojcoms.2025.3593836 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202420 |
| primary_location.source.issn | 2644-125X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2644-125X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Open Journal of the Communications Society |
| primary_location.source.host_organization | https://openalex.org/P4310316002 |
| primary_location.source.host_organization_name | IEEE Communications Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310316002, https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | IEEE Communications Society, Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Open Journal of the Communications Society |
| primary_location.landing_page_url | https://doi.org/10.1109/ojcoms.2025.3593836 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3133651327, https://openalex.org/W4389475539, https://openalex.org/W2981096252, https://openalex.org/W4322576964, https://openalex.org/W4392175538, https://openalex.org/W3200830666, https://openalex.org/W3197739799, https://openalex.org/W3100789280, https://openalex.org/W2945086780, https://openalex.org/W4367727829, https://openalex.org/W3045857701, https://openalex.org/W4385882029, https://openalex.org/W2903475457, https://openalex.org/W3023161348, https://openalex.org/W2898035736, https://openalex.org/W2029946638, https://openalex.org/W3011085742, https://openalex.org/W2962797279, https://openalex.org/W4317795015, https://openalex.org/W3213083273, https://openalex.org/W3185027519, https://openalex.org/W4297283102 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 91, 155 |
| abstract_inverted_index.In | 79 |
| abstract_inverted_index.It | 163 |
| abstract_inverted_index.as | 44 |
| abstract_inverted_index.by | 168 |
| abstract_inverted_index.go | 136 |
| abstract_inverted_index.in | 183 |
| abstract_inverted_index.of | 18, 21, 120, 157, 181, 189 |
| abstract_inverted_index.on | 116 |
| abstract_inverted_index.to | 9, 31, 39, 99, 131 |
| abstract_inverted_index.we | 82, 144 |
| abstract_inverted_index.QoS | 70, 118, 152 |
| abstract_inverted_index.aim | 30 |
| abstract_inverted_index.and | 14, 34, 48, 63, 68, 76, 107, 112, 128, 160, 172 |
| abstract_inverted_index.due | 8 |
| abstract_inverted_index.for | 56, 73 |
| abstract_inverted_index.key | 102 |
| abstract_inverted_index.low | 61 |
| abstract_inverted_index.the | 15, 37, 117, 126, 179, 185 |
| abstract_inverted_index.(XR) | 47 |
| abstract_inverted_index.Deep | 86 |
| abstract_inverted_index.Link | 89 |
| abstract_inverted_index.also | 164 |
| abstract_inverted_index.call | 72 |
| abstract_inverted_index.data | 58 |
| abstract_inverted_index.deep | 96 |
| abstract_inverted_index.each | 121 |
| abstract_inverted_index.face | 4 |
| abstract_inverted_index.from | 125 |
| abstract_inverted_index.high | 57, 64 |
| abstract_inverted_index.lack | 36 |
| abstract_inverted_index.link | 26, 103 |
| abstract_inverted_index.make | 132 |
| abstract_inverted_index.more | 74 |
| abstract_inverted_index.past | 129 |
| abstract_inverted_index.such | 43 |
| abstract_inverted_index.that | 94, 135, 146 |
| abstract_inverted_index.this | 80 |
| abstract_inverted_index.with | 151 |
| abstract_inverted_index.(QoS) | 23 |
| abstract_inverted_index.(VR), | 51 |
| abstract_inverted_index.These | 66, 176 |
| abstract_inverted_index.based | 115 |
| abstract_inverted_index.needs | 71 |
| abstract_inverted_index.novel | 92 |
| abstract_inverted_index.often | 35 |
| abstract_inverted_index.range | 156 |
| abstract_inverted_index.ultra | 60 |
| abstract_inverted_index.which | 52 |
| abstract_inverted_index.Modern | 0 |
| abstract_inverted_index.QDRLLA | 84, 123, 147, 182 |
| abstract_inverted_index.across | 154 |
| abstract_inverted_index.adjust | 101 |
| abstract_inverted_index.beyond | 137 |
| abstract_inverted_index.coding | 108 |
| abstract_inverted_index.demand | 53 |
| abstract_inverted_index.energy | 166 |
| abstract_inverted_index.learns | 124 |
| abstract_inverted_index.paper, | 81 |
| abstract_inverted_index.power, | 111 |
| abstract_inverted_index.rates, | 59 |
| abstract_inverted_index.types. | 162 |
| abstract_inverted_index.usage. | 175 |
| abstract_inverted_index.Quality | 20 |
| abstract_inverted_index.Reality | 46, 50 |
| abstract_inverted_index.Service | 22 |
| abstract_inverted_index.Through | 141 |
| abstract_inverted_index.Virtual | 49 |
| abstract_inverted_index.channel | 12 |
| abstract_inverted_index.complex | 6, 186 |
| abstract_inverted_index.employs | 95 |
| abstract_inverted_index.growing | 16 |
| abstract_inverted_index.network | 158 |
| abstract_inverted_index.propose | 83 |
| abstract_inverted_index.rapidly | 10 |
| abstract_inverted_index.results | 177 |
| abstract_inverted_index.service | 187 |
| abstract_inverted_index.support | 40 |
| abstract_inverted_index.systems | 3 |
| abstract_inverted_index.targets | 153 |
| abstract_inverted_index.Extended | 45 |
| abstract_inverted_index.adaptive | 77 |
| abstract_inverted_index.avoiding | 169 |
| abstract_inverted_index.changing | 11 |
| abstract_inverted_index.emerging | 41 |
| abstract_inverted_index.improves | 149, 165 |
| abstract_inverted_index.informed | 133 |
| abstract_inverted_index.latency, | 62 |
| abstract_inverted_index.learning | 98 |
| abstract_inverted_index.maximize | 32 |
| abstract_inverted_index.methods. | 140 |
| abstract_inverted_index.resource | 174 |
| abstract_inverted_index.schemes, | 109 |
| abstract_inverted_index.spacing, | 114 |
| abstract_inverted_index.wireless | 1, 191 |
| abstract_inverted_index.decisions | 134 |
| abstract_inverted_index.diversity | 17 |
| abstract_inverted_index.extensive | 142 |
| abstract_inverted_index.framework | 93 |
| abstract_inverted_index.including | 105 |
| abstract_inverted_index.networks. | 192 |
| abstract_inverted_index.primarily | 29 |
| abstract_inverted_index.stringent | 67 |
| abstract_inverted_index.(QoS-aware | 85 |
| abstract_inverted_index.adaptation | 27 |
| abstract_inverted_index.challenges | 7 |
| abstract_inverted_index.compliance | 150 |
| abstract_inverted_index.conditions | 13, 159 |
| abstract_inverted_index.efficiency | 167 |
| abstract_inverted_index.guarantees | 55 |
| abstract_inverted_index.mechanisms | 28 |
| abstract_inverted_index.modulation | 106 |
| abstract_inverted_index.optimizing | 173 |
| abstract_inverted_index.solutions. | 78 |
| abstract_inverted_index.subcarrier | 113 |
| abstract_inverted_index.supporting | 184 |
| abstract_inverted_index.throughput | 33 |
| abstract_inverted_index.underscore | 178 |
| abstract_inverted_index.Traditional | 25 |
| abstract_inverted_index.application | 161 |
| abstract_inverted_index.demonstrate | 145 |
| abstract_inverted_index.dynamically | 100 |
| abstract_inverted_index.environment | 127 |
| abstract_inverted_index.flexibility | 38 |
| abstract_inverted_index.intelligent | 75 |
| abstract_inverted_index.parameters, | 104 |
| abstract_inverted_index.unnecessary | 170 |
| abstract_inverted_index.Adaptation), | 90 |
| abstract_inverted_index.application. | 122 |
| abstract_inverted_index.conventional | 138 |
| abstract_inverted_index.increasingly | 5 |
| abstract_inverted_index.observations | 130 |
| abstract_inverted_index.reliability. | 65 |
| abstract_inverted_index.requirements | 119, 188 |
| abstract_inverted_index.simulations, | 143 |
| abstract_inverted_index.simultaneous | 54 |
| abstract_inverted_index.transmission | 110 |
| abstract_inverted_index.Reinforcement | 87 |
| abstract_inverted_index.applications, | 42 |
| abstract_inverted_index.communication | 2 |
| abstract_inverted_index.effectiveness | 180 |
| abstract_inverted_index.reinforcement | 97 |
| abstract_inverted_index.requirements. | 24 |
| abstract_inverted_index.significantly | 148 |
| abstract_inverted_index.Learning-based | 88 |
| abstract_inverted_index.heuristic-based | 139 |
| abstract_inverted_index.next-generation | 190 |
| abstract_inverted_index.retransmissions | 171 |
| abstract_inverted_index.multidimensional | 69 |
| abstract_inverted_index.application-specific | 19 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.3320784 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |