QPipe Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1145/3359989.3365433
Efficient network management requires collecting a variety of statistics over the packet flows. Monitoring the flows directly in the data plane allows the system to detect anomalies faster. However, monitoring algorithms have to handle a throughput of 109 packets per second and to maintain a very low memory footprint. Widely adopted sampling-based approaches suffer from low accuracy in estimations. Thus, it is natural to ask: "Is it possible to maintain important statistics in the data plane using small memory footprint?". In this paper, we answer this question in affirmative for an important case of quantiles. We introduce QPipe, the first quantiles sketching algorithm that can be implemented entirely in the data plane. Our main technical contribution is an on-the-plane implementation of a variant of SweepKLL [27] algorithm. Specifically, we give novel implementations of argmin(), the major building block of SweepKLL which are usually not supported in the data plane of the commodity switch. We prototype QPipe in P4 and compare its performance with a sampling-based baseline. Our evaluations demonstrate 10× memory reduction for a fixed approximation error and 90× error improvement for a fixed amount of memory. We conclude that QPipe can be an attractive alternative to sampling-based methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3359989.3365433
- https://dl.acm.org/doi/pdf/10.1145/3359989.3365433
- OA Status
- gold
- Cited By
- 43
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2991999319
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2991999319Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3359989.3365433Digital Object Identifier
- Title
-
QPipeWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-03Full publication date if available
- Authors
-
Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, Xin JinList of authors in order
- Landing page
-
https://doi.org/10.1145/3359989.3365433Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3359989.3365433Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3359989.3365433Direct OA link when available
- Concepts
-
Computer science, Memory footprint, Footprint, Sampling (signal processing), Block (permutation group theory), Quantile, Network packet, Throughput, Memory management, Reduction (mathematics), Data stream mining, Algorithm, Data mining, Statistics, Mathematics, Computer hardware, Semiconductor memory, Computer vision, Computer network, Operating system, Biology, Telecommunications, Paleontology, Geometry, Filter (signal processing), WirelessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
43Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 5, 2023: 9, 2022: 7, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2991999319 |
|---|---|
| doi | https://doi.org/10.1145/3359989.3365433 |
| ids.doi | https://doi.org/10.1145/3359989.3365433 |
| ids.mag | 2991999319 |
| ids.openalex | https://openalex.org/W2991999319 |
| fwci | 4.46578854 |
| type | article |
| title | QPipe |
| awards[0].id | https://openalex.org/G1884710659 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | CRII-1755646, CNS-1813487 and CCF-1918757 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 291 |
| biblio.first_page | 285 |
| topics[0].id | https://openalex.org/T10138 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Traffic and Congestion Control |
| topics[1].id | https://openalex.org/T12326 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1708 |
| topics[1].subfield.display_name | Hardware and Architecture |
| topics[1].display_name | Network Packet Processing and Optimization |
| topics[2].id | https://openalex.org/T10400 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9990000128746033 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Network Security and Intrusion Detection |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7623757123947144 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C74912251 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7137041091918945 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6815727 |
| concepts[1].display_name | Memory footprint |
| concepts[2].id | https://openalex.org/C132943942 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6293991804122925 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2562511 |
| concepts[2].display_name | Footprint |
| concepts[3].id | https://openalex.org/C140779682 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6190570592880249 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[3].display_name | Sampling (signal processing) |
| concepts[4].id | https://openalex.org/C2777210771 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5735521912574768 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[4].display_name | Block (permutation group theory) |
| concepts[5].id | https://openalex.org/C118671147 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5604866743087769 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q578714 |
| concepts[5].display_name | Quantile |
| concepts[6].id | https://openalex.org/C158379750 |
| concepts[6].level | 2 |
| concepts[6].score | 0.497698575258255 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q214111 |
| concepts[6].display_name | Network packet |
| concepts[7].id | https://openalex.org/C157764524 |
| concepts[7].level | 3 |
| concepts[7].score | 0.47296303510665894 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1383412 |
| concepts[7].display_name | Throughput |
| concepts[8].id | https://openalex.org/C176649486 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4725320637226105 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2308807 |
| concepts[8].display_name | Memory management |
| concepts[9].id | https://openalex.org/C111335779 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4441484808921814 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[9].display_name | Reduction (mathematics) |
| concepts[10].id | https://openalex.org/C89198739 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4413287341594696 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3079880 |
| concepts[10].display_name | Data stream mining |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.40652763843536377 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.29427915811538696 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.20529431104660034 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.12268498539924622 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C9390403 |
| concepts[15].level | 1 |
| concepts[15].score | 0.09433454275131226 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3966 |
| concepts[15].display_name | Computer hardware |
| concepts[16].id | https://openalex.org/C98986596 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1143031 |
| concepts[16].display_name | Semiconductor memory |
| concepts[17].id | https://openalex.org/C31972630 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[17].display_name | Computer vision |
| concepts[18].id | https://openalex.org/C31258907 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[18].display_name | Computer network |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| concepts[21].id | https://openalex.org/C76155785 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[21].display_name | Telecommunications |
| concepts[22].id | https://openalex.org/C151730666 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[22].display_name | Paleontology |
| concepts[23].id | https://openalex.org/C2524010 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[23].display_name | Geometry |
| concepts[24].id | https://openalex.org/C106131492 |
| concepts[24].level | 2 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[24].display_name | Filter (signal processing) |
| concepts[25].id | https://openalex.org/C555944384 |
| concepts[25].level | 2 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[25].display_name | Wireless |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7623757123947144 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/memory-footprint |
| keywords[1].score | 0.7137041091918945 |
| keywords[1].display_name | Memory footprint |
| keywords[2].id | https://openalex.org/keywords/footprint |
| keywords[2].score | 0.6293991804122925 |
| keywords[2].display_name | Footprint |
| keywords[3].id | https://openalex.org/keywords/sampling |
| keywords[3].score | 0.6190570592880249 |
| keywords[3].display_name | Sampling (signal processing) |
| keywords[4].id | https://openalex.org/keywords/block |
| keywords[4].score | 0.5735521912574768 |
| keywords[4].display_name | Block (permutation group theory) |
| keywords[5].id | https://openalex.org/keywords/quantile |
| keywords[5].score | 0.5604866743087769 |
| keywords[5].display_name | Quantile |
| keywords[6].id | https://openalex.org/keywords/network-packet |
| keywords[6].score | 0.497698575258255 |
| keywords[6].display_name | Network packet |
| keywords[7].id | https://openalex.org/keywords/throughput |
| keywords[7].score | 0.47296303510665894 |
| keywords[7].display_name | Throughput |
| keywords[8].id | https://openalex.org/keywords/memory-management |
| keywords[8].score | 0.4725320637226105 |
| keywords[8].display_name | Memory management |
| keywords[9].id | https://openalex.org/keywords/reduction |
| keywords[9].score | 0.4441484808921814 |
| keywords[9].display_name | Reduction (mathematics) |
| keywords[10].id | https://openalex.org/keywords/data-stream-mining |
| keywords[10].score | 0.4413287341594696 |
| keywords[10].display_name | Data stream mining |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.40652763843536377 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.29427915811538696 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.20529431104660034 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.12268498539924622 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/computer-hardware |
| keywords[15].score | 0.09433454275131226 |
| keywords[15].display_name | Computer hardware |
| language | en |
| locations[0].id | doi:10.1145/3359989.3365433 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3359989.3365433 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies |
| locations[0].landing_page_url | https://doi.org/10.1145/3359989.3365433 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5013689256 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nikita Ivkin |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1311688040, https://openalex.org/I145311948 |
| authorships[0].affiliations[0].raw_affiliation_string | Amazon and Johns Hopkins University |
| authorships[0].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[0].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Amazon (United States) |
| authorships[0].institutions[1].id | https://openalex.org/I145311948 |
| authorships[0].institutions[1].ror | https://ror.org/00za53h95 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I145311948 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Johns Hopkins University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nikita Ivkin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Amazon and Johns Hopkins University |
| authorships[1].author.id | https://openalex.org/A5007816619 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8846-5229 |
| authorships[1].author.display_name | Zhuolong Yu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[1].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[1].institutions[0].id | https://openalex.org/I145311948 |
| authorships[1].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Johns Hopkins University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhuolong Yu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Johns Hopkins University |
| authorships[2].author.id | https://openalex.org/A5053736722 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7709-8753 |
| authorships[2].author.display_name | Vladimir Braverman |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[2].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[2].institutions[0].id | https://openalex.org/I145311948 |
| authorships[2].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Johns Hopkins University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vladimir Braverman |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Johns Hopkins University |
| authorships[3].author.id | https://openalex.org/A5100641352 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3873-1653 |
| authorships[3].author.display_name | Xin Jin |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[3].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[3].institutions[0].id | https://openalex.org/I145311948 |
| authorships[3].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Johns Hopkins University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xin Jin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Johns Hopkins University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3359989.3365433 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-12-13T00:00:00 |
| display_name | QPipe |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10138 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Traffic and Congestion Control |
| related_works | https://openalex.org/W4404133543, https://openalex.org/W3137434606, https://openalex.org/W4372263373, https://openalex.org/W2125264433, https://openalex.org/W4237401226, https://openalex.org/W2038054897, https://openalex.org/W4236777984, https://openalex.org/W2112457107, https://openalex.org/W2159716314, https://openalex.org/W2244179743 |
| cited_by_count | 43 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 7 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 11 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3359989.3365433 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3359989.3365433 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3359989.3365433 |
| primary_location.id | doi:10.1145/3359989.3365433 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3359989.3365433 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies |
| primary_location.landing_page_url | https://doi.org/10.1145/3359989.3365433 |
| publication_date | 2019-12-03 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2294895103, https://openalex.org/W1698388015, https://openalex.org/W2157990152, https://openalex.org/W2149806230, https://openalex.org/W2111405401, https://openalex.org/W1994926493, https://openalex.org/W2293755460, https://openalex.org/W2287950946, https://openalex.org/W2295598076, https://openalex.org/W2098791296, https://openalex.org/W2060324268, https://openalex.org/W2080234606, https://openalex.org/W98727202, https://openalex.org/W2112452856, https://openalex.org/W2792538726, https://openalex.org/W2743723076, https://openalex.org/W2761338514, https://openalex.org/W2137826183, https://openalex.org/W2963274201, https://openalex.org/W2112135709, https://openalex.org/W2487095677, https://openalex.org/W2028660080, https://openalex.org/W2744693751, https://openalex.org/W2530137915, https://openalex.org/W2155915275, https://openalex.org/W2119714163, https://openalex.org/W2171903035, https://openalex.org/W2153329411, https://openalex.org/W2161118867, https://openalex.org/W2094835873, https://openalex.org/W2554019663, https://openalex.org/W3102476541, https://openalex.org/W2952925381, https://openalex.org/W2798641544, https://openalex.org/W2604642895, https://openalex.org/W1983266860, https://openalex.org/W2604258491, https://openalex.org/W1501364733, https://openalex.org/W2148386842, https://openalex.org/W4324275641, https://openalex.org/W2207027801, https://openalex.org/W2488946552, https://openalex.org/W2956111272 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 5, 34, 44, 121, 163, 173, 182 |
| abstract_inverted_index.In | 80 |
| abstract_inverted_index.P4 | 157 |
| abstract_inverted_index.We | 95, 153, 187 |
| abstract_inverted_index.an | 90, 117, 193 |
| abstract_inverted_index.be | 105, 192 |
| abstract_inverted_index.in | 17, 57, 72, 87, 108, 145, 156 |
| abstract_inverted_index.is | 61, 116 |
| abstract_inverted_index.it | 60, 66 |
| abstract_inverted_index.of | 7, 36, 93, 120, 123, 132, 138, 149, 185 |
| abstract_inverted_index.to | 24, 32, 42, 63, 68, 196 |
| abstract_inverted_index.we | 83, 128 |
| abstract_inverted_index."Is | 65 |
| abstract_inverted_index.109 | 37 |
| abstract_inverted_index.Our | 112, 166 |
| abstract_inverted_index.and | 41, 158, 177 |
| abstract_inverted_index.are | 141 |
| abstract_inverted_index.can | 104, 191 |
| abstract_inverted_index.for | 89, 172, 181 |
| abstract_inverted_index.its | 160 |
| abstract_inverted_index.low | 46, 55 |
| abstract_inverted_index.not | 143 |
| abstract_inverted_index.per | 39 |
| abstract_inverted_index.the | 10, 14, 18, 22, 73, 98, 109, 134, 146, 150 |
| abstract_inverted_index.10× | 169 |
| abstract_inverted_index.90× | 178 |
| abstract_inverted_index.[27] | 125 |
| abstract_inverted_index.ask: | 64 |
| abstract_inverted_index.case | 92 |
| abstract_inverted_index.data | 19, 74, 110, 147 |
| abstract_inverted_index.from | 54 |
| abstract_inverted_index.give | 129 |
| abstract_inverted_index.have | 31 |
| abstract_inverted_index.main | 113 |
| abstract_inverted_index.over | 9 |
| abstract_inverted_index.that | 103, 189 |
| abstract_inverted_index.this | 81, 85 |
| abstract_inverted_index.very | 45 |
| abstract_inverted_index.with | 162 |
| abstract_inverted_index.QPipe | 155, 190 |
| abstract_inverted_index.Thus, | 59 |
| abstract_inverted_index.block | 137 |
| abstract_inverted_index.error | 176, 179 |
| abstract_inverted_index.first | 99 |
| abstract_inverted_index.fixed | 174, 183 |
| abstract_inverted_index.flows | 15 |
| abstract_inverted_index.major | 135 |
| abstract_inverted_index.novel | 130 |
| abstract_inverted_index.plane | 20, 75, 148 |
| abstract_inverted_index.small | 77 |
| abstract_inverted_index.using | 76 |
| abstract_inverted_index.which | 140 |
| abstract_inverted_index.QPipe, | 97 |
| abstract_inverted_index.Widely | 49 |
| abstract_inverted_index.allows | 21 |
| abstract_inverted_index.amount | 184 |
| abstract_inverted_index.answer | 84 |
| abstract_inverted_index.detect | 25 |
| abstract_inverted_index.flows. | 12 |
| abstract_inverted_index.handle | 33 |
| abstract_inverted_index.memory | 47, 78, 170 |
| abstract_inverted_index.packet | 11 |
| abstract_inverted_index.paper, | 82 |
| abstract_inverted_index.plane. | 111 |
| abstract_inverted_index.second | 40 |
| abstract_inverted_index.suffer | 53 |
| abstract_inverted_index.system | 23 |
| abstract_inverted_index.adopted | 50 |
| abstract_inverted_index.compare | 159 |
| abstract_inverted_index.faster. | 27 |
| abstract_inverted_index.memory. | 186 |
| abstract_inverted_index.natural | 62 |
| abstract_inverted_index.network | 1 |
| abstract_inverted_index.packets | 38 |
| abstract_inverted_index.switch. | 152 |
| abstract_inverted_index.usually | 142 |
| abstract_inverted_index.variant | 122 |
| abstract_inverted_index.variety | 6 |
| abstract_inverted_index.However, | 28 |
| abstract_inverted_index.SweepKLL | 124, 139 |
| abstract_inverted_index.accuracy | 56 |
| abstract_inverted_index.building | 136 |
| abstract_inverted_index.conclude | 188 |
| abstract_inverted_index.directly | 16 |
| abstract_inverted_index.entirely | 107 |
| abstract_inverted_index.maintain | 43, 69 |
| abstract_inverted_index.methods. | 198 |
| abstract_inverted_index.possible | 67 |
| abstract_inverted_index.question | 86 |
| abstract_inverted_index.requires | 3 |
| abstract_inverted_index.Efficient | 0 |
| abstract_inverted_index.algorithm | 102 |
| abstract_inverted_index.anomalies | 26 |
| abstract_inverted_index.argmin(), | 133 |
| abstract_inverted_index.baseline. | 165 |
| abstract_inverted_index.commodity | 151 |
| abstract_inverted_index.important | 70, 91 |
| abstract_inverted_index.introduce | 96 |
| abstract_inverted_index.prototype | 154 |
| abstract_inverted_index.quantiles | 100 |
| abstract_inverted_index.reduction | 171 |
| abstract_inverted_index.sketching | 101 |
| abstract_inverted_index.supported | 144 |
| abstract_inverted_index.technical | 114 |
| abstract_inverted_index.Monitoring | 13 |
| abstract_inverted_index.algorithm. | 126 |
| abstract_inverted_index.algorithms | 30 |
| abstract_inverted_index.approaches | 52 |
| abstract_inverted_index.attractive | 194 |
| abstract_inverted_index.collecting | 4 |
| abstract_inverted_index.footprint. | 48 |
| abstract_inverted_index.management | 2 |
| abstract_inverted_index.monitoring | 29 |
| abstract_inverted_index.quantiles. | 94 |
| abstract_inverted_index.statistics | 8, 71 |
| abstract_inverted_index.throughput | 35 |
| abstract_inverted_index.affirmative | 88 |
| abstract_inverted_index.alternative | 195 |
| abstract_inverted_index.demonstrate | 168 |
| abstract_inverted_index.evaluations | 167 |
| abstract_inverted_index.implemented | 106 |
| abstract_inverted_index.improvement | 180 |
| abstract_inverted_index.performance | 161 |
| abstract_inverted_index.contribution | 115 |
| abstract_inverted_index.estimations. | 58 |
| abstract_inverted_index.footprint?". | 79 |
| abstract_inverted_index.on-the-plane | 118 |
| abstract_inverted_index.Specifically, | 127 |
| abstract_inverted_index.approximation | 175 |
| abstract_inverted_index.implementation | 119 |
| abstract_inverted_index.sampling-based | 51, 164, 197 |
| abstract_inverted_index.implementations | 131 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.9471118 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |