Qsparse-Local-SGD: Distributed SGD With Quantization, Sparsification, and Local Computations Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/jsait.2020.2985917
Communication bottleneck has been identified as a significant issue in distributed optimization of large-scale learning models. Recently, several approaches to mitigate this problem have been proposed, including different forms of gradient compression or computing local models and mixing them iteratively. In this paper, we propose \emph{Qsparse-local-SGD} algorithm, which combines aggressive sparsification with quantization and local computation along with error compensation, by keeping track of the difference between the true and compressed gradients. We propose both synchronous and asynchronous implementations of \emph{Qsparse-local-SGD}. We analyze convergence for \emph{Qsparse-local-SGD} in the \emph{distributed} setting for smooth non-convex and convex objective functions. We demonstrate that \emph{Qsparse-local-SGD} converges at the same rate as vanilla distributed SGD for many important classes of sparsifiers and quantizers. We use \emph{Qsparse-local-SGD} to train ResNet-50 on ImageNet and show that it results in significant savings over the state-of-the-art, in the number of bits transmitted to reach target accuracy.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/jsait.2020.2985917
- OA Status
- green
- Cited By
- 20
- References
- 77
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2948092338
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2948092338Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jsait.2020.2985917Digital Object Identifier
- Title
-
Qsparse-Local-SGD: Distributed SGD With Quantization, Sparsification, and Local ComputationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-07Full publication date if available
- Authors
-
Debraj Basu, Deepesh Data, Can Karakus, Suhas DiggaviList of authors in order
- Landing page
-
https://doi.org/10.1109/jsait.2020.2985917Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1906.02367Direct OA link when available
- Concepts
-
Computation, Bottleneck, Computer science, Quantization (signal processing), Asynchronous communication, Rate of convergence, Regular polygon, Algorithm, Theoretical computer science, Mathematics, Key (lock), Geometry, Telecommunications, Embedded system, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 7, 2023: 2, 2022: 1, 2021: 8, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
77Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2948092338 |
|---|---|
| doi | https://doi.org/10.1109/jsait.2020.2985917 |
| ids.doi | https://doi.org/10.1109/jsait.2020.2985917 |
| ids.mag | 2948092338 |
| ids.openalex | https://openalex.org/W2948092338 |
| fwci | 1.90917413 |
| type | preprint |
| title | Qsparse-Local-SGD: Distributed SGD With Quantization, Sparsification, and Local Computations |
| biblio.issue | 1 |
| biblio.volume | 1 |
| biblio.last_page | 226 |
| biblio.first_page | 217 |
| topics[0].id | https://openalex.org/T11612 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Stochastic Gradient Optimization Techniques |
| topics[1].id | https://openalex.org/T10500 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Sparse and Compressive Sensing Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9979000091552734 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C45374587 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6325991749763489 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[0].display_name | Computation |
| concepts[1].id | https://openalex.org/C2780513914 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6321519613265991 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[1].display_name | Bottleneck |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6107487082481384 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C28855332 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5979855060577393 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q198099 |
| concepts[3].display_name | Quantization (signal processing) |
| concepts[4].id | https://openalex.org/C151319957 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5393736958503723 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q752739 |
| concepts[4].display_name | Asynchronous communication |
| concepts[5].id | https://openalex.org/C57869625 |
| concepts[5].level | 3 |
| concepts[5].score | 0.48615762591362 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1783502 |
| concepts[5].display_name | Rate of convergence |
| concepts[6].id | https://openalex.org/C112680207 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4672883152961731 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q714886 |
| concepts[6].display_name | Regular polygon |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4096089005470276 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3354809582233429 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.29534822702407837 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C26517878 |
| concepts[10].level | 2 |
| concepts[10].score | 0.1538802981376648 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[10].display_name | Key (lock) |
| concepts[11].id | https://openalex.org/C2524010 |
| concepts[11].level | 1 |
| concepts[11].score | 0.07334080338478088 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[11].display_name | Geometry |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07075530290603638 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| concepts[13].id | https://openalex.org/C149635348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[13].display_name | Embedded system |
| concepts[14].id | https://openalex.org/C38652104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[14].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/computation |
| keywords[0].score | 0.6325991749763489 |
| keywords[0].display_name | Computation |
| keywords[1].id | https://openalex.org/keywords/bottleneck |
| keywords[1].score | 0.6321519613265991 |
| keywords[1].display_name | Bottleneck |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6107487082481384 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/quantization |
| keywords[3].score | 0.5979855060577393 |
| keywords[3].display_name | Quantization (signal processing) |
| keywords[4].id | https://openalex.org/keywords/asynchronous-communication |
| keywords[4].score | 0.5393736958503723 |
| keywords[4].display_name | Asynchronous communication |
| keywords[5].id | https://openalex.org/keywords/rate-of-convergence |
| keywords[5].score | 0.48615762591362 |
| keywords[5].display_name | Rate of convergence |
| keywords[6].id | https://openalex.org/keywords/regular-polygon |
| keywords[6].score | 0.4672883152961731 |
| keywords[6].display_name | Regular polygon |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.4096089005470276 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.3354809582233429 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.29534822702407837 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/key |
| keywords[10].score | 0.1538802981376648 |
| keywords[10].display_name | Key (lock) |
| keywords[11].id | https://openalex.org/keywords/geometry |
| keywords[11].score | 0.07334080338478088 |
| keywords[11].display_name | Geometry |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.07075530290603638 |
| keywords[12].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1109/jsait.2020.2985917 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4210211895 |
| locations[0].source.issn | 2641-8770 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2641-8770 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Journal on Selected Areas in Information Theory |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal on Selected Areas in Information Theory |
| locations[0].landing_page_url | https://doi.org/10.1109/jsait.2020.2985917 |
| locations[1].id | pmh:oai:arXiv.org:1906.02367 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1906.02367 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1906.02367 |
| locations[2].id | mag:2948092338 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | http://export.arxiv.org/pdf/1906.02367 |
| locations[3].id | doi:10.48550/arxiv.1906.02367 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.1906.02367 |
| locations[4].id | mag:2971064744 |
| locations[4].is_oa | False |
| locations[4].source.id | https://openalex.org/S4306420609 |
| locations[4].source.issn | |
| locations[4].source.type | conference |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Neural Information Processing Systems |
| locations[4].source.host_organization | |
| locations[4].source.host_organization_name | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | Neural Information Processing Systems |
| locations[4].landing_page_url | https://papers.nips.cc/paper/9610-qsparse-local-sgd-distributed-sgd-with-quantization-sparsification-and-local-computations.pdf |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5067849515 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3130-4253 |
| authorships[0].author.display_name | Debraj Basu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1306409833 |
| authorships[0].affiliations[0].raw_affiliation_string | [Adobe Systems] |
| authorships[0].institutions[0].id | https://openalex.org/I1306409833 |
| authorships[0].institutions[0].ror | https://ror.org/059tvcg64 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1306409833 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Adobe Systems (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Debraj Basu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | [Adobe Systems] |
| authorships[1].author.id | https://openalex.org/A5023777978 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3544-8414 |
| authorships[1].author.display_name | Deepesh Data |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[1].affiliations[0].raw_affiliation_string | University of California, Los Angeles, Los Angeles, United States |
| authorships[1].institutions[0].id | https://openalex.org/I161318765 |
| authorships[1].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Los Angeles |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Deepesh Data |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of California, Los Angeles, Los Angeles, United States |
| authorships[2].author.id | https://openalex.org/A5103177913 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6878-6984 |
| authorships[2].author.display_name | Can Karakus |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210089985 |
| authorships[2].affiliations[0].raw_affiliation_string | Amazon |
| authorships[2].institutions[0].id | https://openalex.org/I4210089985 |
| authorships[2].institutions[0].ror | https://ror.org/00b9ktm87 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210089985 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Amazon (Germany) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Can Karakus |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Amazon |
| authorships[3].author.id | https://openalex.org/A5083980887 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7313-9861 |
| authorships[3].author.display_name | Suhas Diggavi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[3].affiliations[0].raw_affiliation_string | University of California-Los Angeles |
| authorships[3].institutions[0].id | https://openalex.org/I161318765 |
| authorships[3].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Los Angeles |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Suhas Diggavi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of California-Los Angeles |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1906.02367 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Qsparse-Local-SGD: Distributed SGD With Quantization, Sparsification, and Local Computations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11612 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Stochastic Gradient Optimization Techniques |
| related_works | https://openalex.org/W2971064744, https://openalex.org/W2950953465, https://openalex.org/W3097291876, https://openalex.org/W2769644379, https://openalex.org/W2998304172, https://openalex.org/W3124360785, https://openalex.org/W2800887228, https://openalex.org/W2964267428, https://openalex.org/W2743961547, https://openalex.org/W3011425085, https://openalex.org/W2913259183, https://openalex.org/W2126290786, https://openalex.org/W3101036738, https://openalex.org/W2942276578, https://openalex.org/W2908936460, https://openalex.org/W2954590635, https://openalex.org/W1596024815, https://openalex.org/W2573736728, https://openalex.org/W2429995037, https://openalex.org/W3036128815 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 8 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:1906.02367 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1906.02367 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1906.02367 |
| primary_location.id | doi:10.1109/jsait.2020.2985917 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4210211895 |
| primary_location.source.issn | 2641-8770 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2641-8770 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Journal on Selected Areas in Information Theory |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal on Selected Areas in Information Theory |
| primary_location.landing_page_url | https://doi.org/10.1109/jsait.2020.2985917 |
| publication_date | 2020-04-07 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2142623206, https://openalex.org/W6631190155, https://openalex.org/W6758557334, https://openalex.org/W6758358981, https://openalex.org/W2962952793, https://openalex.org/W2143908786, https://openalex.org/W6684583874, https://openalex.org/W2112796928, https://openalex.org/W1992208280, https://openalex.org/W6728757088, https://openalex.org/W6713134421, https://openalex.org/W6746200960, https://openalex.org/W6751646691, https://openalex.org/W6739513683, https://openalex.org/W6713835734, https://openalex.org/W2606891064, https://openalex.org/W6754416507, https://openalex.org/W6746839373, https://openalex.org/W6745723224, https://openalex.org/W6683245038, https://openalex.org/W6714239094, https://openalex.org/W114517082, https://openalex.org/W6738460352, https://openalex.org/W6752012617, https://openalex.org/W6754341472, https://openalex.org/W6728975057, https://openalex.org/W6748019269, https://openalex.org/W1994616650, https://openalex.org/W6763549698, https://openalex.org/W2194775991, https://openalex.org/W2900182564, https://openalex.org/W2605994693, https://openalex.org/W6685655662, https://openalex.org/W6676540010, https://openalex.org/W6628022308, https://openalex.org/W6682774789, https://openalex.org/W2405883473, https://openalex.org/W6680402377, https://openalex.org/W6752191696, https://openalex.org/W6748304459, https://openalex.org/W2103325786, https://openalex.org/W6676963778, https://openalex.org/W2180530054, https://openalex.org/W2890924858, https://openalex.org/W2729686365, https://openalex.org/W2460815216, https://openalex.org/W2162576315, https://openalex.org/W2963766684, https://openalex.org/W2112269233, https://openalex.org/W2156779765, https://openalex.org/W3101036738, https://openalex.org/W2541884796, https://openalex.org/W2407022425, https://openalex.org/W2944542720, https://openalex.org/W2402144811, https://openalex.org/W2108475251, https://openalex.org/W2964121744, https://openalex.org/W2547352193, https://openalex.org/W2911327153, https://openalex.org/W2963664311, https://openalex.org/W2405578611, https://openalex.org/W1415242555, https://openalex.org/W2138243089, https://openalex.org/W2964267428, https://openalex.org/W2963335821, https://openalex.org/W2963179579, https://openalex.org/W2154682027, https://openalex.org/W2964163156, https://openalex.org/W2888561381, https://openalex.org/W2889676205, https://openalex.org/W2951781666, https://openalex.org/W2896457183, https://openalex.org/W2963803379, https://openalex.org/W2964004663, https://openalex.org/W2911863041, https://openalex.org/W2963540381, https://openalex.org/W2787998955 |
| referenced_works_count | 77 |
| abstract_inverted_index.a | 6 |
| abstract_inverted_index.In | 40 |
| abstract_inverted_index.We | 72, 81, 97, 118 |
| abstract_inverted_index.as | 5, 106 |
| abstract_inverted_index.at | 102 |
| abstract_inverted_index.by | 60 |
| abstract_inverted_index.in | 9, 86, 131, 137 |
| abstract_inverted_index.it | 129 |
| abstract_inverted_index.of | 12, 29, 63, 79, 114, 140 |
| abstract_inverted_index.on | 124 |
| abstract_inverted_index.or | 32 |
| abstract_inverted_index.to | 19, 121, 143 |
| abstract_inverted_index.we | 43 |
| abstract_inverted_index.SGD | 109 |
| abstract_inverted_index.and | 36, 53, 69, 76, 93, 116, 126 |
| abstract_inverted_index.for | 84, 90, 110 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.the | 64, 67, 87, 103, 135, 138 |
| abstract_inverted_index.use | 119 |
| abstract_inverted_index.been | 3, 24 |
| abstract_inverted_index.bits | 141 |
| abstract_inverted_index.both | 74 |
| abstract_inverted_index.have | 23 |
| abstract_inverted_index.many | 111 |
| abstract_inverted_index.over | 134 |
| abstract_inverted_index.rate | 105 |
| abstract_inverted_index.same | 104 |
| abstract_inverted_index.show | 127 |
| abstract_inverted_index.that | 99, 128 |
| abstract_inverted_index.them | 38 |
| abstract_inverted_index.this | 21, 41 |
| abstract_inverted_index.true | 68 |
| abstract_inverted_index.with | 51, 57 |
| abstract_inverted_index.along | 56 |
| abstract_inverted_index.error | 58 |
| abstract_inverted_index.forms | 28 |
| abstract_inverted_index.issue | 8 |
| abstract_inverted_index.local | 34, 54 |
| abstract_inverted_index.reach | 144 |
| abstract_inverted_index.track | 62 |
| abstract_inverted_index.train | 122 |
| abstract_inverted_index.which | 47 |
| abstract_inverted_index.convex | 94 |
| abstract_inverted_index.mixing | 37 |
| abstract_inverted_index.models | 35 |
| abstract_inverted_index.number | 139 |
| abstract_inverted_index.paper, | 42 |
| abstract_inverted_index.smooth | 91 |
| abstract_inverted_index.target | 145 |
| abstract_inverted_index.analyze | 82 |
| abstract_inverted_index.between | 66 |
| abstract_inverted_index.classes | 113 |
| abstract_inverted_index.keeping | 61 |
| abstract_inverted_index.models. | 15 |
| abstract_inverted_index.problem | 22 |
| abstract_inverted_index.propose | 44, 73 |
| abstract_inverted_index.results | 130 |
| abstract_inverted_index.savings | 133 |
| abstract_inverted_index.setting | 89 |
| abstract_inverted_index.several | 17 |
| abstract_inverted_index.vanilla | 107 |
| abstract_inverted_index.ImageNet | 125 |
| abstract_inverted_index.combines | 48 |
| abstract_inverted_index.gradient | 30 |
| abstract_inverted_index.learning | 14 |
| abstract_inverted_index.mitigate | 20 |
| abstract_inverted_index.Recently, | 16 |
| abstract_inverted_index.ResNet-50 | 123 |
| abstract_inverted_index.accuracy. | 146 |
| abstract_inverted_index.computing | 33 |
| abstract_inverted_index.converges | 101 |
| abstract_inverted_index.different | 27 |
| abstract_inverted_index.important | 112 |
| abstract_inverted_index.including | 26 |
| abstract_inverted_index.objective | 95 |
| abstract_inverted_index.proposed, | 25 |
| abstract_inverted_index.aggressive | 49 |
| abstract_inverted_index.algorithm, | 46 |
| abstract_inverted_index.approaches | 18 |
| abstract_inverted_index.bottleneck | 1 |
| abstract_inverted_index.compressed | 70 |
| abstract_inverted_index.difference | 65 |
| abstract_inverted_index.functions. | 96 |
| abstract_inverted_index.gradients. | 71 |
| abstract_inverted_index.identified | 4 |
| abstract_inverted_index.non-convex | 92 |
| abstract_inverted_index.compression | 31 |
| abstract_inverted_index.computation | 55 |
| abstract_inverted_index.convergence | 83 |
| abstract_inverted_index.demonstrate | 98 |
| abstract_inverted_index.distributed | 10, 108 |
| abstract_inverted_index.large-scale | 13 |
| abstract_inverted_index.quantizers. | 117 |
| abstract_inverted_index.significant | 7, 132 |
| abstract_inverted_index.sparsifiers | 115 |
| abstract_inverted_index.synchronous | 75 |
| abstract_inverted_index.transmitted | 142 |
| abstract_inverted_index.asynchronous | 77 |
| abstract_inverted_index.iteratively. | 39 |
| abstract_inverted_index.optimization | 11 |
| abstract_inverted_index.quantization | 52 |
| abstract_inverted_index.Communication | 0 |
| abstract_inverted_index.compensation, | 59 |
| abstract_inverted_index.sparsification | 50 |
| abstract_inverted_index.implementations | 78 |
| abstract_inverted_index.state-of-the-art, | 136 |
| abstract_inverted_index.\emph{distributed} | 88 |
| abstract_inverted_index.\emph{Qsparse-local-SGD} | 45, 85, 100, 120 |
| abstract_inverted_index.\emph{Qsparse-local-SGD}. | 80 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.87772923 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |