Quadruple-star systems are not always nested triples: a machine learning approach to dynamical stability Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2301.09930
The dynamical stability of quadruple-star systems has traditionally been treated as a problem involving two `nested' triples which constitute a quadruple. In this novel study, we employed a machine learning algorithm, the multi-layer perceptron (MLP), to directly classify 2+2 and 3+1 quadruples based on their stability (or long-term boundedness). The training data sets for the classification, comprised of $5\times10^5$ quadruples each, were integrated using the highly accurate direct $N$-body code MSTAR. We also carried out a limited parameter space study of zero-inclination systems to directly compare quadruples to triples. We found that both our quadruple MLP models perform better than a `nested' triple MLP approach, which is especially significant for 3+1 quadruples. The classification accuracies for the 2+2 MLP and 3+1 MLP models are 94% and 93% respectively, while the scores for the `nested' triple approach are 88% and 66% respectively. This is a crucial implication for quadruple population synthesis studies. Our MLP models, which are very simple and almost instantaneous to implement, are available on GitHub, along with Python3 scripts to access them.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2301.09930
- https://arxiv.org/pdf/2301.09930
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4318143626
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4318143626Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2301.09930Digital Object Identifier
- Title
-
Quadruple-star systems are not always nested triples: a machine learning approach to dynamical stabilityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-24Full publication date if available
- Authors
-
Pavan Vynatheya, Rosemary A. Mardling, Adrian S. HamersList of authors in order
- Landing page
-
https://arxiv.org/abs/2301.09930Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2301.09930Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2301.09930Direct OA link when available
- Concepts
-
Perceptron, Stability (learning theory), Nested loop join, Computer science, Star (game theory), Population, Code (set theory), Scripting language, Algorithm, Simple (philosophy), Parameter space, Artificial intelligence, Dynamical systems theory, Pattern recognition (psychology), Mathematics, Machine learning, Artificial neural network, Data mining, Statistics, Programming language, Set (abstract data type), Physics, Quantum mechanics, Philosophy, Epistemology, Sociology, Demography, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4318143626 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2301.09930 |
| ids.doi | https://doi.org/10.48550/arxiv.2301.09930 |
| ids.openalex | https://openalex.org/W4318143626 |
| fwci | |
| type | preprint |
| title | Quadruple-star systems are not always nested triples: a machine learning approach to dynamical stability |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T10913 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Molecular Junctions and Nanostructures |
| topics[2].id | https://openalex.org/T10002 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9955000281333923 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3107 |
| topics[2].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[2].display_name | Advanced Chemical Physics Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C60908668 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7652019262313843 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q690207 |
| concepts[0].display_name | Perceptron |
| concepts[1].id | https://openalex.org/C112972136 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6214372515678406 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[1].display_name | Stability (learning theory) |
| concepts[2].id | https://openalex.org/C1306188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5958127379417419 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4060687 |
| concepts[2].display_name | Nested loop join |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.540723979473114 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2780897414 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49506106972694397 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7600592 |
| concepts[4].display_name | Star (game theory) |
| concepts[5].id | https://openalex.org/C2908647359 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49143755435943604 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[5].display_name | Population |
| concepts[6].id | https://openalex.org/C2776760102 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4760708212852478 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[6].display_name | Code (set theory) |
| concepts[7].id | https://openalex.org/C61423126 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46294131875038147 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q187432 |
| concepts[7].display_name | Scripting language |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44827035069465637 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C2780586882 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43497854471206665 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[9].display_name | Simple (philosophy) |
| concepts[10].id | https://openalex.org/C73586568 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4290279746055603 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2600211 |
| concepts[10].display_name | Parameter space |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.41935649514198303 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C79379906 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4165138602256775 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3174497 |
| concepts[12].display_name | Dynamical systems theory |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3829291760921478 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3367381989955902 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C119857082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.28695398569107056 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[15].display_name | Machine learning |
| concepts[16].id | https://openalex.org/C50644808 |
| concepts[16].level | 2 |
| concepts[16].score | 0.23585215210914612 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[16].display_name | Artificial neural network |
| concepts[17].id | https://openalex.org/C124101348 |
| concepts[17].level | 1 |
| concepts[17].score | 0.1445816159248352 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[17].display_name | Data mining |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.1349000632762909 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.12291386723518372 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| concepts[20].id | https://openalex.org/C177264268 |
| concepts[20].level | 2 |
| concepts[20].score | 0.08911207318305969 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[20].display_name | Set (abstract data type) |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.08028578758239746 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| concepts[22].id | https://openalex.org/C62520636 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[22].display_name | Quantum mechanics |
| concepts[23].id | https://openalex.org/C138885662 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[23].display_name | Philosophy |
| concepts[24].id | https://openalex.org/C111472728 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[24].display_name | Epistemology |
| concepts[25].id | https://openalex.org/C144024400 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[25].display_name | Sociology |
| concepts[26].id | https://openalex.org/C149923435 |
| concepts[26].level | 1 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[26].display_name | Demography |
| concepts[27].id | https://openalex.org/C134306372 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[27].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/perceptron |
| keywords[0].score | 0.7652019262313843 |
| keywords[0].display_name | Perceptron |
| keywords[1].id | https://openalex.org/keywords/stability |
| keywords[1].score | 0.6214372515678406 |
| keywords[1].display_name | Stability (learning theory) |
| keywords[2].id | https://openalex.org/keywords/nested-loop-join |
| keywords[2].score | 0.5958127379417419 |
| keywords[2].display_name | Nested loop join |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.540723979473114 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/star |
| keywords[4].score | 0.49506106972694397 |
| keywords[4].display_name | Star (game theory) |
| keywords[5].id | https://openalex.org/keywords/population |
| keywords[5].score | 0.49143755435943604 |
| keywords[5].display_name | Population |
| keywords[6].id | https://openalex.org/keywords/code |
| keywords[6].score | 0.4760708212852478 |
| keywords[6].display_name | Code (set theory) |
| keywords[7].id | https://openalex.org/keywords/scripting-language |
| keywords[7].score | 0.46294131875038147 |
| keywords[7].display_name | Scripting language |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.44827035069465637 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/simple |
| keywords[9].score | 0.43497854471206665 |
| keywords[9].display_name | Simple (philosophy) |
| keywords[10].id | https://openalex.org/keywords/parameter-space |
| keywords[10].score | 0.4290279746055603 |
| keywords[10].display_name | Parameter space |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.41935649514198303 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/dynamical-systems-theory |
| keywords[12].score | 0.4165138602256775 |
| keywords[12].display_name | Dynamical systems theory |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.3829291760921478 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.3367381989955902 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/machine-learning |
| keywords[15].score | 0.28695398569107056 |
| keywords[15].display_name | Machine learning |
| keywords[16].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[16].score | 0.23585215210914612 |
| keywords[16].display_name | Artificial neural network |
| keywords[17].id | https://openalex.org/keywords/data-mining |
| keywords[17].score | 0.1445816159248352 |
| keywords[17].display_name | Data mining |
| keywords[18].id | https://openalex.org/keywords/statistics |
| keywords[18].score | 0.1349000632762909 |
| keywords[18].display_name | Statistics |
| keywords[19].id | https://openalex.org/keywords/programming-language |
| keywords[19].score | 0.12291386723518372 |
| keywords[19].display_name | Programming language |
| keywords[20].id | https://openalex.org/keywords/set |
| keywords[20].score | 0.08911207318305969 |
| keywords[20].display_name | Set (abstract data type) |
| keywords[21].id | https://openalex.org/keywords/physics |
| keywords[21].score | 0.08028578758239746 |
| keywords[21].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2301.09930 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2301.09930 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2301.09930 |
| locations[1].id | doi:10.48550/arxiv.2301.09930 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2301.09930 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5063621152 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3736-2059 |
| authorships[0].author.display_name | Pavan Vynatheya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vynatheya, Pavan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5061120015 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7362-3311 |
| authorships[1].author.display_name | Rosemary A. Mardling |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mardling, Rosemary A. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5023106503 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1004-5635 |
| authorships[2].author.display_name | Adrian S. Hamers |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Hamers, Adrian S. |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2301.09930 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Quadruple-star systems are not always nested triples: a machine learning approach to dynamical stability |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W2046765700, https://openalex.org/W4384345686, https://openalex.org/W2357937784, https://openalex.org/W2547618384, https://openalex.org/W4394391052, https://openalex.org/W2145834781, https://openalex.org/W2577782152, https://openalex.org/W262455470, https://openalex.org/W4242899858, https://openalex.org/W2356327704 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2301.09930 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2301.09930 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2301.09930 |
| primary_location.id | pmh:oai:arXiv.org:2301.09930 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2301.09930 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2301.09930 |
| publication_date | 2023-01-24 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 19, 27, 75, 100, 143 |
| abstract_inverted_index.In | 21 |
| abstract_inverted_index.We | 71, 89 |
| abstract_inverted_index.as | 10 |
| abstract_inverted_index.is | 106, 142 |
| abstract_inverted_index.of | 3, 57, 80 |
| abstract_inverted_index.on | 43, 165 |
| abstract_inverted_index.to | 35, 83, 87, 161, 171 |
| abstract_inverted_index.we | 25 |
| abstract_inverted_index.(or | 46 |
| abstract_inverted_index.2+2 | 38, 117 |
| abstract_inverted_index.3+1 | 40, 110, 120 |
| abstract_inverted_index.66% | 139 |
| abstract_inverted_index.88% | 137 |
| abstract_inverted_index.93% | 126 |
| abstract_inverted_index.94% | 124 |
| abstract_inverted_index.MLP | 95, 103, 118, 121, 152 |
| abstract_inverted_index.Our | 151 |
| abstract_inverted_index.The | 0, 49, 112 |
| abstract_inverted_index.and | 39, 119, 125, 138, 158 |
| abstract_inverted_index.are | 123, 136, 155, 163 |
| abstract_inverted_index.for | 53, 109, 115, 131, 146 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.our | 93 |
| abstract_inverted_index.out | 74 |
| abstract_inverted_index.the | 31, 54, 64, 116, 129, 132 |
| abstract_inverted_index.two | 14 |
| abstract_inverted_index.This | 141 |
| abstract_inverted_index.also | 72 |
| abstract_inverted_index.been | 8 |
| abstract_inverted_index.both | 92 |
| abstract_inverted_index.code | 69 |
| abstract_inverted_index.data | 51 |
| abstract_inverted_index.sets | 52 |
| abstract_inverted_index.than | 99 |
| abstract_inverted_index.that | 91 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.very | 156 |
| abstract_inverted_index.were | 61 |
| abstract_inverted_index.with | 168 |
| abstract_inverted_index.along | 167 |
| abstract_inverted_index.based | 42 |
| abstract_inverted_index.each, | 60 |
| abstract_inverted_index.found | 90 |
| abstract_inverted_index.novel | 23 |
| abstract_inverted_index.space | 78 |
| abstract_inverted_index.study | 79 |
| abstract_inverted_index.their | 44 |
| abstract_inverted_index.them. | 173 |
| abstract_inverted_index.using | 63 |
| abstract_inverted_index.which | 17, 105, 154 |
| abstract_inverted_index.while | 128 |
| abstract_inverted_index.(MLP), | 34 |
| abstract_inverted_index.MSTAR. | 70 |
| abstract_inverted_index.access | 172 |
| abstract_inverted_index.almost | 159 |
| abstract_inverted_index.better | 98 |
| abstract_inverted_index.direct | 67 |
| abstract_inverted_index.highly | 65 |
| abstract_inverted_index.models | 96, 122 |
| abstract_inverted_index.scores | 130 |
| abstract_inverted_index.simple | 157 |
| abstract_inverted_index.study, | 24 |
| abstract_inverted_index.triple | 102, 134 |
| abstract_inverted_index.GitHub, | 166 |
| abstract_inverted_index.Python3 | 169 |
| abstract_inverted_index.carried | 73 |
| abstract_inverted_index.compare | 85 |
| abstract_inverted_index.crucial | 144 |
| abstract_inverted_index.limited | 76 |
| abstract_inverted_index.machine | 28 |
| abstract_inverted_index.models, | 153 |
| abstract_inverted_index.perform | 97 |
| abstract_inverted_index.problem | 12 |
| abstract_inverted_index.scripts | 170 |
| abstract_inverted_index.systems | 5, 82 |
| abstract_inverted_index.treated | 9 |
| abstract_inverted_index.triples | 16 |
| abstract_inverted_index.$N$-body | 68 |
| abstract_inverted_index.`nested' | 15, 101, 133 |
| abstract_inverted_index.accurate | 66 |
| abstract_inverted_index.approach | 135 |
| abstract_inverted_index.classify | 37 |
| abstract_inverted_index.directly | 36, 84 |
| abstract_inverted_index.employed | 26 |
| abstract_inverted_index.learning | 29 |
| abstract_inverted_index.studies. | 150 |
| abstract_inverted_index.training | 50 |
| abstract_inverted_index.triples. | 88 |
| abstract_inverted_index.approach, | 104 |
| abstract_inverted_index.available | 164 |
| abstract_inverted_index.comprised | 56 |
| abstract_inverted_index.dynamical | 1 |
| abstract_inverted_index.involving | 13 |
| abstract_inverted_index.long-term | 47 |
| abstract_inverted_index.parameter | 77 |
| abstract_inverted_index.quadruple | 94, 147 |
| abstract_inverted_index.stability | 2, 45 |
| abstract_inverted_index.synthesis | 149 |
| abstract_inverted_index.accuracies | 114 |
| abstract_inverted_index.algorithm, | 30 |
| abstract_inverted_index.constitute | 18 |
| abstract_inverted_index.especially | 107 |
| abstract_inverted_index.implement, | 162 |
| abstract_inverted_index.integrated | 62 |
| abstract_inverted_index.perceptron | 33 |
| abstract_inverted_index.population | 148 |
| abstract_inverted_index.quadruple. | 20 |
| abstract_inverted_index.quadruples | 41, 59, 86 |
| abstract_inverted_index.implication | 145 |
| abstract_inverted_index.multi-layer | 32 |
| abstract_inverted_index.quadruples. | 111 |
| abstract_inverted_index.significant | 108 |
| abstract_inverted_index.$5\times10^5$ | 58 |
| abstract_inverted_index.boundedness). | 48 |
| abstract_inverted_index.instantaneous | 160 |
| abstract_inverted_index.respectively, | 127 |
| abstract_inverted_index.respectively. | 140 |
| abstract_inverted_index.traditionally | 7 |
| abstract_inverted_index.classification | 113 |
| abstract_inverted_index.quadruple-star | 4 |
| abstract_inverted_index.classification, | 55 |
| abstract_inverted_index.zero-inclination | 81 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |