QUADS: Quantized Distillation Framework for Efficient Speech Language Understanding Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21437/interspeech.2025-532
Spoken Language Understanding (SLU) systems must balance performance and efficiency, particularly in resource-constrained environments. Existing methods apply distillation and quantization separately, leading to suboptimal compression as distillation ignores quantization constraints. We propose QUADS, a unified framework that optimizes both through multi-stage training with a pre-tuned model, enhancing adaptability to low-bit regimes while maintaining accuracy. QUADS achieves 71.13\% accuracy on SLURP and 99.20\% on FSC, with only minor degradations of up to 5.56\% compared to state-of-the-art models. Additionally, it reduces computational complexity by 60--73$\times$ (GMACs) and model size by 83--700$\times$, demonstrating strong robustness under extreme quantization. These results establish QUADS as a highly efficient solution for real-world, resource-constrained SLU applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.21437/interspeech.2025-532
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415320245
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415320245Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21437/interspeech.2025-532Digital Object Identifier
- Title
-
QUADS: Quantized Distillation Framework for Efficient Speech Language UnderstandingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-17Full publication date if available
- Authors
-
Subrata Biswas, Mohammad Nur Hossain Khan, Bashima IslamList of authors in order
- Landing page
-
https://doi.org/10.21437/interspeech.2025-532Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.14723Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415320245 |
|---|---|
| doi | https://doi.org/10.21437/interspeech.2025-532 |
| ids.doi | https://doi.org/10.21437/interspeech.2025-532 |
| ids.openalex | https://openalex.org/W4415320245 |
| fwci | 0.0 |
| type | article |
| title | QUADS: Quantized Distillation Framework for Efficient Speech Language Understanding |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 4102 |
| biblio.first_page | 4098 |
| topics[0].id | https://openalex.org/T10201 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech Recognition and Synthesis |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.991599977016449 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T12031 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9907000064849854 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech and dialogue systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.21437/interspeech.2025-532 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Interspeech 2025 |
| locations[0].landing_page_url | https://doi.org/10.21437/interspeech.2025-532 |
| locations[1].id | pmh:oai:arXiv.org:2505.14723 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2505.14723 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2505.14723 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5061646605 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5959-8666 |
| authorships[0].author.display_name | Subrata Biswas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Subrata Biswas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101384237 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8312-7001 |
| authorships[1].author.display_name | Mohammad Nur Hossain Khan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohammad Nur Hossain Khan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5035909313 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1917-054X |
| authorships[2].author.display_name | Bashima Islam |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Islam, Bashima |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.14723 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | QUADS: Quantized Distillation Framework for Efficient Speech Language Understanding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10201 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech Recognition and Synthesis |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.14723 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.14723 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.14723 |
| primary_location.id | doi:10.21437/interspeech.2025-532 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Interspeech 2025 |
| primary_location.landing_page_url | https://doi.org/10.21437/interspeech.2025-532 |
| publication_date | 2025-08-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 33, 43, 100 |
| abstract_inverted_index.We | 30 |
| abstract_inverted_index.as | 25, 99 |
| abstract_inverted_index.by | 81, 87 |
| abstract_inverted_index.in | 11 |
| abstract_inverted_index.it | 77 |
| abstract_inverted_index.of | 68 |
| abstract_inverted_index.on | 58, 62 |
| abstract_inverted_index.to | 22, 48, 70, 73 |
| abstract_inverted_index.up | 69 |
| abstract_inverted_index.SLU | 107 |
| abstract_inverted_index.and | 8, 18, 60, 84 |
| abstract_inverted_index.for | 104 |
| abstract_inverted_index.FSC, | 63 |
| abstract_inverted_index.both | 38 |
| abstract_inverted_index.must | 5 |
| abstract_inverted_index.only | 65 |
| abstract_inverted_index.size | 86 |
| abstract_inverted_index.that | 36 |
| abstract_inverted_index.with | 42, 64 |
| abstract_inverted_index.(SLU) | 3 |
| abstract_inverted_index.QUADS | 54, 98 |
| abstract_inverted_index.SLURP | 59 |
| abstract_inverted_index.These | 95 |
| abstract_inverted_index.apply | 16 |
| abstract_inverted_index.minor | 66 |
| abstract_inverted_index.model | 85 |
| abstract_inverted_index.under | 92 |
| abstract_inverted_index.while | 51 |
| abstract_inverted_index.5.56\% | 71 |
| abstract_inverted_index.QUADS, | 32 |
| abstract_inverted_index.Spoken | 0 |
| abstract_inverted_index.highly | 101 |
| abstract_inverted_index.model, | 45 |
| abstract_inverted_index.strong | 90 |
| abstract_inverted_index.(GMACs) | 83 |
| abstract_inverted_index.71.13\% | 56 |
| abstract_inverted_index.99.20\% | 61 |
| abstract_inverted_index.balance | 6 |
| abstract_inverted_index.extreme | 93 |
| abstract_inverted_index.ignores | 27 |
| abstract_inverted_index.leading | 21 |
| abstract_inverted_index.low-bit | 49 |
| abstract_inverted_index.methods | 15 |
| abstract_inverted_index.models. | 75 |
| abstract_inverted_index.propose | 31 |
| abstract_inverted_index.reduces | 78 |
| abstract_inverted_index.regimes | 50 |
| abstract_inverted_index.results | 96 |
| abstract_inverted_index.systems | 4 |
| abstract_inverted_index.through | 39 |
| abstract_inverted_index.unified | 34 |
| abstract_inverted_index.Existing | 14 |
| abstract_inverted_index.Language | 1 |
| abstract_inverted_index.accuracy | 57 |
| abstract_inverted_index.achieves | 55 |
| abstract_inverted_index.compared | 72 |
| abstract_inverted_index.solution | 103 |
| abstract_inverted_index.training | 41 |
| abstract_inverted_index.accuracy. | 53 |
| abstract_inverted_index.efficient | 102 |
| abstract_inverted_index.enhancing | 46 |
| abstract_inverted_index.establish | 97 |
| abstract_inverted_index.framework | 35 |
| abstract_inverted_index.optimizes | 37 |
| abstract_inverted_index.pre-tuned | 44 |
| abstract_inverted_index.complexity | 80 |
| abstract_inverted_index.robustness | 91 |
| abstract_inverted_index.suboptimal | 23 |
| abstract_inverted_index.compression | 24 |
| abstract_inverted_index.efficiency, | 9 |
| abstract_inverted_index.maintaining | 52 |
| abstract_inverted_index.multi-stage | 40 |
| abstract_inverted_index.performance | 7 |
| abstract_inverted_index.real-world, | 105 |
| abstract_inverted_index.separately, | 20 |
| abstract_inverted_index.adaptability | 47 |
| abstract_inverted_index.constraints. | 29 |
| abstract_inverted_index.degradations | 67 |
| abstract_inverted_index.distillation | 17, 26 |
| abstract_inverted_index.particularly | 10 |
| abstract_inverted_index.quantization | 19, 28 |
| abstract_inverted_index.Additionally, | 76 |
| abstract_inverted_index.Understanding | 2 |
| abstract_inverted_index.applications. | 108 |
| abstract_inverted_index.computational | 79 |
| abstract_inverted_index.demonstrating | 89 |
| abstract_inverted_index.environments. | 13 |
| abstract_inverted_index.quantization. | 94 |
| abstract_inverted_index.60--73$\times$ | 82 |
| abstract_inverted_index.83--700$\times$, | 88 |
| abstract_inverted_index.state-of-the-art | 74 |
| abstract_inverted_index.resource-constrained | 12, 106 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.22607319 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |