Quality at the Tail of Machine Learning Inference Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.13925
Machine learning inference should be subject to stringent inference time constraints while ensuring high inference quality, especially in safety-critical (e.g., autonomous driving) and mission-critical (e.g., emotion recognition) contexts. Neglecting either aspect can lead to severe consequences, such as loss of life and property damage. Many studies lack a comprehensive consideration of these metrics, leading to incomplete or misleading evaluations. The study unveils a counterintuitive revelation: deep learning inference quality exhibits fluctuations due to inference time. To depict this phenomenon, the authors coin a new term, "tail quality," providing a more comprehensive evaluation, and overcoming conventional metric limitations. Moreover, the research proposes an initial evaluation framework to analyze factors affecting quality fluctuations, facilitating the prediction of the potential distribution of inference quality. The effectiveness of the evaluation framework is validated through experiments conducted on deep learning models for three different tasks across four systems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2212.13925
- https://arxiv.org/pdf/2212.13925
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313303747
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313303747Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2212.13925Digital Object Identifier
- Title
-
Quality at the Tail of Machine Learning InferenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-25Full publication date if available
- Authors
-
Zhengxin Yang, Wanling Gao, Chunjie Luo, Lei Wang, Jianfeng ZhanList of authors in order
- Landing page
-
https://arxiv.org/abs/2212.13925Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2212.13925Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2212.13925Direct OA link when available
- Concepts
-
Quality (philosophy), Business, Environmental science, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313303747 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2212.13925 |
| ids.doi | https://doi.org/10.48550/arxiv.2212.13925 |
| ids.openalex | https://openalex.org/W4313303747 |
| fwci | |
| type | preprint |
| title | Quality at the Tail of Machine Learning Inference |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779530757 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6315054893493652 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[0].display_name | Quality (philosophy) |
| concepts[1].id | https://openalex.org/C144133560 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3913952708244324 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[1].display_name | Business |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3739609122276306 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C121332964 |
| concepts[3].level | 0 |
| concepts[3].score | 0.25492212176322937 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[3].display_name | Physics |
| concepts[4].id | https://openalex.org/C62520636 |
| concepts[4].level | 1 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[4].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/quality |
| keywords[0].score | 0.6315054893493652 |
| keywords[0].display_name | Quality (philosophy) |
| keywords[1].id | https://openalex.org/keywords/business |
| keywords[1].score | 0.3913952708244324 |
| keywords[1].display_name | Business |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.3739609122276306 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/physics |
| keywords[3].score | 0.25492212176322937 |
| keywords[3].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2212.13925 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2212.13925 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2212.13925 |
| locations[1].id | doi:10.48550/arxiv.2212.13925 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2212.13925 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5003256733 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3160-0784 |
| authorships[0].author.display_name | Zhengxin Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Zhengxin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075110031 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3911-9389 |
| authorships[1].author.display_name | Wanling Gao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gao, Wanling |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5033347503 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6977-929X |
| authorships[2].author.display_name | Chunjie Luo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Luo, Chunjie |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100435848 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0961-0441 |
| authorships[3].author.display_name | Lei Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Lei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5085963553 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3728-6837 |
| authorships[4].author.display_name | Jianfeng Zhan |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhan, Jianfeng |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2212.13925 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-01-06T00:00:00 |
| display_name | Quality at the Tail of Machine Learning Inference |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic | |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2384667405, https://openalex.org/W2373216116, https://openalex.org/W2362665430, https://openalex.org/W3123396266, https://openalex.org/W4323667137, https://openalex.org/W3007404728, https://openalex.org/W2352466142, https://openalex.org/W2375981319, https://openalex.org/W2562923059 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2212.13925 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2212.13925 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2212.13925 |
| primary_location.id | pmh:oai:arXiv.org:2212.13925 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2212.13925 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2212.13925 |
| publication_date | 2022-12-25 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 47, 62, 82, 88 |
| abstract_inverted_index.To | 75 |
| abstract_inverted_index.an | 101 |
| abstract_inverted_index.as | 37 |
| abstract_inverted_index.be | 4 |
| abstract_inverted_index.in | 17 |
| abstract_inverted_index.is | 127 |
| abstract_inverted_index.of | 39, 50, 114, 118, 123 |
| abstract_inverted_index.on | 132 |
| abstract_inverted_index.or | 56 |
| abstract_inverted_index.to | 6, 33, 54, 72, 105 |
| abstract_inverted_index.The | 59, 121 |
| abstract_inverted_index.and | 22, 41, 92 |
| abstract_inverted_index.can | 31 |
| abstract_inverted_index.due | 71 |
| abstract_inverted_index.for | 136 |
| abstract_inverted_index.new | 83 |
| abstract_inverted_index.the | 79, 98, 112, 115, 124 |
| abstract_inverted_index.Many | 44 |
| abstract_inverted_index.coin | 81 |
| abstract_inverted_index.deep | 65, 133 |
| abstract_inverted_index.four | 141 |
| abstract_inverted_index.high | 13 |
| abstract_inverted_index.lack | 46 |
| abstract_inverted_index.lead | 32 |
| abstract_inverted_index.life | 40 |
| abstract_inverted_index.loss | 38 |
| abstract_inverted_index.more | 89 |
| abstract_inverted_index.such | 36 |
| abstract_inverted_index.this | 77 |
| abstract_inverted_index.time | 9 |
| abstract_inverted_index."tail | 85 |
| abstract_inverted_index.study | 60 |
| abstract_inverted_index.tasks | 139 |
| abstract_inverted_index.term, | 84 |
| abstract_inverted_index.these | 51 |
| abstract_inverted_index.three | 137 |
| abstract_inverted_index.time. | 74 |
| abstract_inverted_index.while | 11 |
| abstract_inverted_index.(e.g., | 19, 24 |
| abstract_inverted_index.across | 140 |
| abstract_inverted_index.aspect | 30 |
| abstract_inverted_index.depict | 76 |
| abstract_inverted_index.either | 29 |
| abstract_inverted_index.metric | 95 |
| abstract_inverted_index.models | 135 |
| abstract_inverted_index.severe | 34 |
| abstract_inverted_index.should | 3 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.analyze | 106 |
| abstract_inverted_index.authors | 80 |
| abstract_inverted_index.damage. | 43 |
| abstract_inverted_index.emotion | 25 |
| abstract_inverted_index.factors | 107 |
| abstract_inverted_index.initial | 102 |
| abstract_inverted_index.leading | 53 |
| abstract_inverted_index.quality | 68, 109 |
| abstract_inverted_index.studies | 45 |
| abstract_inverted_index.subject | 5 |
| abstract_inverted_index.through | 129 |
| abstract_inverted_index.unveils | 61 |
| abstract_inverted_index.driving) | 21 |
| abstract_inverted_index.ensuring | 12 |
| abstract_inverted_index.exhibits | 69 |
| abstract_inverted_index.learning | 1, 66, 134 |
| abstract_inverted_index.metrics, | 52 |
| abstract_inverted_index.property | 42 |
| abstract_inverted_index.proposes | 100 |
| abstract_inverted_index.quality, | 15 |
| abstract_inverted_index.quality. | 120 |
| abstract_inverted_index.research | 99 |
| abstract_inverted_index.systems. | 142 |
| abstract_inverted_index.Moreover, | 97 |
| abstract_inverted_index.affecting | 108 |
| abstract_inverted_index.conducted | 131 |
| abstract_inverted_index.contexts. | 27 |
| abstract_inverted_index.different | 138 |
| abstract_inverted_index.framework | 104, 126 |
| abstract_inverted_index.inference | 2, 8, 14, 67, 73, 119 |
| abstract_inverted_index.potential | 116 |
| abstract_inverted_index.providing | 87 |
| abstract_inverted_index.quality," | 86 |
| abstract_inverted_index.stringent | 7 |
| abstract_inverted_index.validated | 128 |
| abstract_inverted_index.Neglecting | 28 |
| abstract_inverted_index.autonomous | 20 |
| abstract_inverted_index.especially | 16 |
| abstract_inverted_index.evaluation | 103, 125 |
| abstract_inverted_index.incomplete | 55 |
| abstract_inverted_index.misleading | 57 |
| abstract_inverted_index.overcoming | 93 |
| abstract_inverted_index.prediction | 113 |
| abstract_inverted_index.constraints | 10 |
| abstract_inverted_index.evaluation, | 91 |
| abstract_inverted_index.experiments | 130 |
| abstract_inverted_index.phenomenon, | 78 |
| abstract_inverted_index.revelation: | 64 |
| abstract_inverted_index.conventional | 94 |
| abstract_inverted_index.distribution | 117 |
| abstract_inverted_index.evaluations. | 58 |
| abstract_inverted_index.facilitating | 111 |
| abstract_inverted_index.fluctuations | 70 |
| abstract_inverted_index.limitations. | 96 |
| abstract_inverted_index.recognition) | 26 |
| abstract_inverted_index.comprehensive | 48, 90 |
| abstract_inverted_index.consequences, | 35 |
| abstract_inverted_index.consideration | 49 |
| abstract_inverted_index.effectiveness | 122 |
| abstract_inverted_index.fluctuations, | 110 |
| abstract_inverted_index.safety-critical | 18 |
| abstract_inverted_index.counterintuitive | 63 |
| abstract_inverted_index.mission-critical | 23 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |