Quantifying extreme failure scenarios in transportation systems with graph learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.patter.2025.101209
Statistical analysis of extreme events in complex engineering systems is essential for system design and reliability and resilience assessment. Due to the rarity of extreme events and the computational burden of system performance evaluation, estimating the probability of extreme failures is prohibitively expensive. Traditional methods, such as importance sampling, struggle with the high cost of deriving importance sampling densities for numerous components in large-scale systems. Here, we propose a graph learning approach, called importance sampling based on graph autoencoder (GAE-IS), to integrate a modified graph autoencoder model, termed a criticality assessor, with the cross-entropy-based importance sampling method. GAE-IS effectively decouples the criticality of components from their vulnerability to disastrous events in the workflow, demonstrating notable transferability and leading to significantly reduced computational costs of importance sampling in large-scale networks. The proposed methodology improves sampling efficiency by one to two orders of magnitude across several road networks and provides more accurate probability estimations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.patter.2025.101209
- OA Status
- gold
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408447097
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408447097Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.patter.2025.101209Digital Object Identifier
- Title
-
Quantifying extreme failure scenarios in transportation systems with graph learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-14Full publication date if available
- Authors
-
Mingxue Guo, Tingting Zhao, Jianxi Gao, Xin Meng, Ziyou GaoList of authors in order
- Landing page
-
https://doi.org/10.1016/j.patter.2025.101209Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.patter.2025.101209Direct OA link when available
- Concepts
-
Computer science, Graph, Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408447097 |
|---|---|
| doi | https://doi.org/10.1016/j.patter.2025.101209 |
| ids.doi | https://doi.org/10.1016/j.patter.2025.101209 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40264956 |
| ids.openalex | https://openalex.org/W4408447097 |
| fwci | 0.0 |
| type | article |
| title | Quantifying extreme failure scenarios in transportation systems with graph learning |
| awards[0].id | https://openalex.org/G7601323162 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 72288101 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G839615606 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 72091513 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G911740828 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 72242102 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G3659998003 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 72201028 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G1658287642 |
| awards[4].funder_id | https://openalex.org/F4320306076 |
| awards[4].display_name | |
| awards[4].funder_award_id | 2047488 |
| awards[4].funder_display_name | National Science Foundation |
| biblio.issue | 4 |
| biblio.volume | 6 |
| biblio.last_page | 101209 |
| biblio.first_page | 101209 |
| topics[0].id | https://openalex.org/T11357 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1804 |
| topics[0].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[0].display_name | Risk and Safety Analysis |
| topics[1].id | https://openalex.org/T11606 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Infrastructure Maintenance and Monitoring |
| topics[2].id | https://openalex.org/T10809 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9879999756813049 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3614 |
| topics[2].subfield.display_name | Radiological and Ultrasound Technology |
| topics[2].display_name | Occupational Health and Safety Research |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320321001 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 5200 |
| apc_list.currency | USD |
| apc_list.value_usd | 5200 |
| apc_paid.value | 5200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 5200 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5632467865943909 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C132525143 |
| concepts[1].level | 2 |
| concepts[1].score | 0.45724156498908997 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[1].display_name | Graph |
| concepts[2].id | https://openalex.org/C80444323 |
| concepts[2].level | 1 |
| concepts[2].score | 0.18041640520095825 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[2].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5632467865943909 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/graph |
| keywords[1].score | 0.45724156498908997 |
| keywords[1].display_name | Graph |
| keywords[2].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[2].score | 0.18041640520095825 |
| keywords[2].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.1016/j.patter.2025.101209 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210198061 |
| locations[0].source.issn | 2666-3899 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2666-3899 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Patterns |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Patterns |
| locations[0].landing_page_url | https://doi.org/10.1016/j.patter.2025.101209 |
| locations[1].id | pmid:40264956 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Patterns (New York, N.Y.) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40264956 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12010444 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Patterns (N Y) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12010444 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5036207460 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mingxue Guo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Systems Science, Beijing Jiaotong University, Beijing 100044, China. |
| authorships[0].institutions[0].id | https://openalex.org/I21193070 |
| authorships[0].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mingxue Guo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Systems Science, Beijing Jiaotong University, Beijing 100044, China. |
| authorships[1].author.id | https://openalex.org/A5084510181 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2820-5046 |
| authorships[1].author.display_name | Tingting Zhao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Systems Science, Beijing Jiaotong University, Beijing 100044, China. |
| authorships[1].institutions[0].id | https://openalex.org/I21193070 |
| authorships[1].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tingting Zhao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Systems Science, Beijing Jiaotong University, Beijing 100044, China. |
| authorships[2].author.id | https://openalex.org/A5031928873 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3952-208X |
| authorships[2].author.display_name | Jianxi Gao |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I165799507 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA. |
| authorships[2].institutions[0].id | https://openalex.org/I165799507 |
| authorships[2].institutions[0].ror | https://ror.org/01rtyzb94 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I165799507 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Rensselaer Polytechnic Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jianxi Gao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA. |
| authorships[3].author.id | https://openalex.org/A5020274552 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0101-6042 |
| authorships[3].author.display_name | Xin Meng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Systems Science, Beijing Jiaotong University, Beijing 100044, China. |
| authorships[3].institutions[0].id | https://openalex.org/I21193070 |
| authorships[3].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xin Meng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Systems Science, Beijing Jiaotong University, Beijing 100044, China. |
| authorships[4].author.id | https://openalex.org/A5049135480 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6519-4681 |
| authorships[4].author.display_name | Ziyou Gao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Systems Science, Beijing Jiaotong University, Beijing 100044, China. |
| authorships[4].institutions[0].id | https://openalex.org/I21193070 |
| authorships[4].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing Jiaotong University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ziyou Gao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Systems Science, Beijing Jiaotong University, Beijing 100044, China. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.patter.2025.101209 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Quantifying extreme failure scenarios in transportation systems with graph learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11357 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1804 |
| primary_topic.subfield.display_name | Statistics, Probability and Uncertainty |
| primary_topic.display_name | Risk and Safety Analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.patter.2025.101209 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210198061 |
| best_oa_location.source.issn | 2666-3899 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2666-3899 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Patterns |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Patterns |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.patter.2025.101209 |
| primary_location.id | doi:10.1016/j.patter.2025.101209 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210198061 |
| primary_location.source.issn | 2666-3899 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2666-3899 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Patterns |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Patterns |
| primary_location.landing_page_url | https://doi.org/10.1016/j.patter.2025.101209 |
| publication_date | 2025-03-14 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4385415997, https://openalex.org/W4399765269, https://openalex.org/W2913820977, https://openalex.org/W6853596948, https://openalex.org/W4390166041, https://openalex.org/W3208191024, https://openalex.org/W3171241630, https://openalex.org/W2923885512, https://openalex.org/W4384664715, https://openalex.org/W4313014294, https://openalex.org/W6798691539, https://openalex.org/W4392356615, https://openalex.org/W4394018784, https://openalex.org/W4313430604, https://openalex.org/W2131695829, https://openalex.org/W4385299627, https://openalex.org/W4205536138, https://openalex.org/W3044277952, https://openalex.org/W3005650655, https://openalex.org/W4221058169, https://openalex.org/W2015731569, https://openalex.org/W4390839743, https://openalex.org/W4225165552, https://openalex.org/W4353056919, https://openalex.org/W2511072509, https://openalex.org/W2792089402, https://openalex.org/W3120035739, https://openalex.org/W2753370870, https://openalex.org/W4379930900, https://openalex.org/W2883540206, https://openalex.org/W4310238072, https://openalex.org/W2896845269, https://openalex.org/W3149189374, https://openalex.org/W2960697244, https://openalex.org/W2097235968, https://openalex.org/W4221075420, https://openalex.org/W4400690181, https://openalex.org/W4366149084, https://openalex.org/W6607066894, https://openalex.org/W2963202249, https://openalex.org/W4293763785, https://openalex.org/W2922926208, https://openalex.org/W260846160, https://openalex.org/W3111361573, https://openalex.org/W4213178162, https://openalex.org/W6730084236, https://openalex.org/W6736641260, https://openalex.org/W6762586943, https://openalex.org/W6711228274, https://openalex.org/W6784653527, https://openalex.org/W4397043299, https://openalex.org/W1967699276, https://openalex.org/W3184523527, https://openalex.org/W4381851170, https://openalex.org/W4287642280, https://openalex.org/W4322614756, https://openalex.org/W1500657154, https://openalex.org/W3103413756, https://openalex.org/W1600175910 |
| referenced_works_count | 59 |
| abstract_inverted_index.a | 68, 82, 88 |
| abstract_inverted_index.as | 46 |
| abstract_inverted_index.by | 135 |
| abstract_inverted_index.in | 5, 62, 110, 126 |
| abstract_inverted_index.is | 9, 40 |
| abstract_inverted_index.of | 2, 23, 30, 37, 54, 102, 123, 140 |
| abstract_inverted_index.on | 76 |
| abstract_inverted_index.to | 20, 80, 107, 118, 137 |
| abstract_inverted_index.we | 66 |
| abstract_inverted_index.Due | 19 |
| abstract_inverted_index.The | 129 |
| abstract_inverted_index.and | 14, 16, 26, 116, 146 |
| abstract_inverted_index.for | 11, 59 |
| abstract_inverted_index.one | 136 |
| abstract_inverted_index.the | 21, 27, 35, 51, 92, 100, 111 |
| abstract_inverted_index.two | 138 |
| abstract_inverted_index.cost | 53 |
| abstract_inverted_index.from | 104 |
| abstract_inverted_index.high | 52 |
| abstract_inverted_index.more | 148 |
| abstract_inverted_index.road | 144 |
| abstract_inverted_index.such | 45 |
| abstract_inverted_index.with | 50, 91 |
| abstract_inverted_index.Here, | 65 |
| abstract_inverted_index.based | 75 |
| abstract_inverted_index.costs | 122 |
| abstract_inverted_index.graph | 69, 77, 84 |
| abstract_inverted_index.their | 105 |
| abstract_inverted_index.GAE-IS | 97 |
| abstract_inverted_index.across | 142 |
| abstract_inverted_index.burden | 29 |
| abstract_inverted_index.called | 72 |
| abstract_inverted_index.design | 13 |
| abstract_inverted_index.events | 4, 25, 109 |
| abstract_inverted_index.model, | 86 |
| abstract_inverted_index.orders | 139 |
| abstract_inverted_index.rarity | 22 |
| abstract_inverted_index.system | 12, 31 |
| abstract_inverted_index.termed | 87 |
| abstract_inverted_index.complex | 6 |
| abstract_inverted_index.extreme | 3, 24, 38 |
| abstract_inverted_index.leading | 117 |
| abstract_inverted_index.method. | 96 |
| abstract_inverted_index.notable | 114 |
| abstract_inverted_index.propose | 67 |
| abstract_inverted_index.reduced | 120 |
| abstract_inverted_index.several | 143 |
| abstract_inverted_index.systems | 8 |
| abstract_inverted_index.accurate | 149 |
| abstract_inverted_index.analysis | 1 |
| abstract_inverted_index.deriving | 55 |
| abstract_inverted_index.failures | 39 |
| abstract_inverted_index.improves | 132 |
| abstract_inverted_index.learning | 70 |
| abstract_inverted_index.methods, | 44 |
| abstract_inverted_index.modified | 83 |
| abstract_inverted_index.networks | 145 |
| abstract_inverted_index.numerous | 60 |
| abstract_inverted_index.proposed | 130 |
| abstract_inverted_index.provides | 147 |
| abstract_inverted_index.sampling | 57, 74, 95, 125, 133 |
| abstract_inverted_index.struggle | 49 |
| abstract_inverted_index.systems. | 64 |
| abstract_inverted_index.(GAE-IS), | 79 |
| abstract_inverted_index.approach, | 71 |
| abstract_inverted_index.assessor, | 90 |
| abstract_inverted_index.decouples | 99 |
| abstract_inverted_index.densities | 58 |
| abstract_inverted_index.essential | 10 |
| abstract_inverted_index.integrate | 81 |
| abstract_inverted_index.magnitude | 141 |
| abstract_inverted_index.networks. | 128 |
| abstract_inverted_index.sampling, | 48 |
| abstract_inverted_index.workflow, | 112 |
| abstract_inverted_index.components | 61, 103 |
| abstract_inverted_index.disastrous | 108 |
| abstract_inverted_index.efficiency | 134 |
| abstract_inverted_index.estimating | 34 |
| abstract_inverted_index.expensive. | 42 |
| abstract_inverted_index.importance | 47, 56, 73, 94, 124 |
| abstract_inverted_index.resilience | 17 |
| abstract_inverted_index.Statistical | 0 |
| abstract_inverted_index.Traditional | 43 |
| abstract_inverted_index.assessment. | 18 |
| abstract_inverted_index.autoencoder | 78, 85 |
| abstract_inverted_index.criticality | 89, 101 |
| abstract_inverted_index.effectively | 98 |
| abstract_inverted_index.engineering | 7 |
| abstract_inverted_index.evaluation, | 33 |
| abstract_inverted_index.large-scale | 63, 127 |
| abstract_inverted_index.methodology | 131 |
| abstract_inverted_index.performance | 32 |
| abstract_inverted_index.probability | 36, 150 |
| abstract_inverted_index.reliability | 15 |
| abstract_inverted_index.estimations. | 151 |
| abstract_inverted_index.computational | 28, 121 |
| abstract_inverted_index.demonstrating | 113 |
| abstract_inverted_index.prohibitively | 41 |
| abstract_inverted_index.significantly | 119 |
| abstract_inverted_index.vulnerability | 106 |
| abstract_inverted_index.transferability | 115 |
| abstract_inverted_index.cross-entropy-based | 93 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.08536068 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |