Quantifying phase function influence in subdiffusively backscattered light Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1117/1.jbo.21.3.035002
· OA: W2295456662
Light backscattering at short source-detector separations is considerably influenced by the scattering phase function of a turbid medium. We seek to more precisely relate a medium's subdiffusive backscattering to the angular scattering characteristics of its microstructure. First, we demonstrate the inability of the scattering asymmetry g1 = < cos θ > to predict phase function influence on backscattering and reveal ambiguities related to the established phase function parameter γ. Through the use of high-order similarity relations, we introduce a new parameter that more accurately relates a scattering phase function to its subdiffusive backscattering intensity. Using extensive analytical forward calculations based on solutions to the radiative transfer equation in the spatial domain and spatial frequency domain, we demonstrate the superiority of our empirically derived quantifier σ over the established parameter γ.