Quantifying the uncertainty of human activity recognition using a Bayesian machine learning method: a prediction study Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20463/pan.2025.0020
[Purpose] Machine learning methods accurately predict physical activity outcomes using accelerometer data generated by wearable devices. Thus, they allow investigation of the impact of the built environment on population physical activity. Although traditional machine learning methods do not provide prediction uncertainty, a new method, Bayesian Additive Regression Trees (BART), can quantify such uncertainty as a posterior predictive distribution. Our objective was to evaluate the performance of BART in regard to predicting physical activity status.[Methods] We applied multinomial BART and a benchmark method, random forest, to accelerometer data at 25,424 time points generated by wearable devices worn by 37 participants. We evaluated the prediction accuracy, F1 scores, and confusion matrices using leave-one-person-out cross-validation.[Results] BART and random forest demonstrated comparable prediction performances.[Conclusion] BART is a relatively novel machine learning method that can advance the incorporation of the predicted physical activity status into built environment research. Future research should evaluate the association between the environment and physical activity as predicted by BART.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.20463/pan.2025.0020
- https://www.e-pan.org/upload/pdf/pan-2025-0020.pdf
- OA Status
- diamond
- References
- 31
- OpenAlex ID
- https://openalex.org/W4415189941
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415189941Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20463/pan.2025.0020Digital Object Identifier
- Title
-
Quantifying the uncertainty of human activity recognition using a Bayesian machine learning method: a prediction studyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-30Full publication date if available
- Authors
-
Hiroshi Mamiya, Daniel FullerList of authors in order
- Landing page
-
https://doi.org/10.20463/pan.2025.0020Publisher landing page
- PDF URL
-
https://www.e-pan.org/upload/pdf/pan-2025-0020.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.e-pan.org/upload/pdf/pan-2025-0020.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
31Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415189941 |
|---|---|
| doi | https://doi.org/10.20463/pan.2025.0020 |
| ids.doi | https://doi.org/10.20463/pan.2025.0020 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41093305 |
| ids.openalex | https://openalex.org/W4415189941 |
| fwci | 0.0 |
| type | article |
| title | Quantifying the uncertainty of human activity recognition using a Bayesian machine learning method: a prediction study |
| biblio.issue | 3 |
| biblio.volume | 29 |
| biblio.last_page | 12 |
| biblio.first_page | 8 |
| topics[0].id | https://openalex.org/T10352 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2737 |
| topics[0].subfield.display_name | Physiology |
| topics[0].display_name | Physical Activity and Health |
| topics[1].id | https://openalex.org/T10444 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9925000071525574 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Context-Aware Activity Recognition Systems |
| topics[2].id | https://openalex.org/T10298 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9713000059127808 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3313 |
| topics[2].subfield.display_name | Transportation |
| topics[2].display_name | Urban Transport and Accessibility |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.20463/pan.2025.0020 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210230524 |
| locations[0].source.issn | 2733-7545 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2733-7545 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Physical Activity and Nutrition |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.e-pan.org/upload/pdf/pan-2025-0020.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Physical Activity and Nutrition |
| locations[0].landing_page_url | https://doi.org/10.20463/pan.2025.0020 |
| locations[1].id | pmid:41093305 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Physical activity and nutrition |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41093305 |
| locations[2].id | pmh:oai:europepmc.org:11339003 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12530984 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5034543482 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5711-8558 |
| authorships[0].author.display_name | Hiroshi Mamiya |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5023651 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada. |
| authorships[0].institutions[0].id | https://openalex.org/I5023651 |
| authorships[0].institutions[0].ror | https://ror.org/01pxwe438 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I5023651 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | McGill University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hiroshi Mamiya |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada. |
| authorships[1].author.id | https://openalex.org/A5079996884 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2015-2955 |
| authorships[1].author.display_name | Daniel Fuller |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32625721 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Community Health and Epidemiology, University of Saskatchewan, Saskatoon, Canada. |
| authorships[1].institutions[0].id | https://openalex.org/I32625721 |
| authorships[1].institutions[0].ror | https://ror.org/010x8gc63 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32625721 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of Saskatchewan |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Daniel Fuller |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Community Health and Epidemiology, University of Saskatchewan, Saskatoon, Canada. |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.e-pan.org/upload/pdf/pan-2025-0020.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-15T00:00:00 |
| display_name | Quantifying the uncertainty of human activity recognition using a Bayesian machine learning method: a prediction study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10352 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2737 |
| primary_topic.subfield.display_name | Physiology |
| primary_topic.display_name | Physical Activity and Health |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.20463/pan.2025.0020 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210230524 |
| best_oa_location.source.issn | 2733-7545 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2733-7545 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Physical Activity and Nutrition |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.e-pan.org/upload/pdf/pan-2025-0020.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Physical Activity and Nutrition |
| best_oa_location.landing_page_url | https://doi.org/10.20463/pan.2025.0020 |
| primary_location.id | doi:10.20463/pan.2025.0020 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210230524 |
| primary_location.source.issn | 2733-7545 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2733-7545 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Physical Activity and Nutrition |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.e-pan.org/upload/pdf/pan-2025-0020.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Physical Activity and Nutrition |
| primary_location.landing_page_url | https://doi.org/10.20463/pan.2025.0020 |
| publication_date | 2025-09-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3005355639, https://openalex.org/W3012558084, https://openalex.org/W4315644415, https://openalex.org/W2790240746, https://openalex.org/W3037209593, https://openalex.org/W3101421075, https://openalex.org/W3118929067, https://openalex.org/W2126223139, https://openalex.org/W4293152273, https://openalex.org/W2977733304, https://openalex.org/W2778988196, https://openalex.org/W2126292488, https://openalex.org/W4293426412, https://openalex.org/W4281393173, https://openalex.org/W3147173796, https://openalex.org/W2970642864, https://openalex.org/W2069026846, https://openalex.org/W2304267454, https://openalex.org/W4312018890, https://openalex.org/W3115199354, https://openalex.org/W2042502570, https://openalex.org/W1969630774, https://openalex.org/W4280544497, https://openalex.org/W4220747158, https://openalex.org/W2144409155, https://openalex.org/W2087403652, https://openalex.org/W2756121211, https://openalex.org/W2990977557, https://openalex.org/W2775244970, https://openalex.org/W3103245345, https://openalex.org/W2312211806 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 41, 54, 79, 122 |
| abstract_inverted_index.37 | 97 |
| abstract_inverted_index.F1 | 104 |
| abstract_inverted_index.We | 74, 99 |
| abstract_inverted_index.as | 53, 155 |
| abstract_inverted_index.at | 87 |
| abstract_inverted_index.by | 13, 92, 96, 157 |
| abstract_inverted_index.do | 36 |
| abstract_inverted_index.in | 67 |
| abstract_inverted_index.is | 121 |
| abstract_inverted_index.of | 20, 23, 65, 133 |
| abstract_inverted_index.on | 27 |
| abstract_inverted_index.to | 61, 69, 84 |
| abstract_inverted_index.Our | 58 |
| abstract_inverted_index.and | 78, 106, 113, 152 |
| abstract_inverted_index.can | 49, 129 |
| abstract_inverted_index.new | 42 |
| abstract_inverted_index.not | 37 |
| abstract_inverted_index.the | 21, 24, 63, 101, 131, 134, 147, 150 |
| abstract_inverted_index.was | 60 |
| abstract_inverted_index.BART | 66, 77, 112, 120 |
| abstract_inverted_index.data | 11, 86 |
| abstract_inverted_index.into | 139 |
| abstract_inverted_index.such | 51 |
| abstract_inverted_index.that | 128 |
| abstract_inverted_index.they | 17 |
| abstract_inverted_index.time | 89 |
| abstract_inverted_index.worn | 95 |
| abstract_inverted_index.BART. | 158 |
| abstract_inverted_index.Thus, | 16 |
| abstract_inverted_index.Trees | 47 |
| abstract_inverted_index.allow | 18 |
| abstract_inverted_index.built | 25, 140 |
| abstract_inverted_index.novel | 124 |
| abstract_inverted_index.using | 9, 109 |
| abstract_inverted_index.25,424 | 88 |
| abstract_inverted_index.Future | 143 |
| abstract_inverted_index.forest | 115 |
| abstract_inverted_index.impact | 22 |
| abstract_inverted_index.method | 127 |
| abstract_inverted_index.points | 90 |
| abstract_inverted_index.random | 82, 114 |
| abstract_inverted_index.regard | 68 |
| abstract_inverted_index.should | 145 |
| abstract_inverted_index.status | 138 |
| abstract_inverted_index.(BART), | 48 |
| abstract_inverted_index.Machine | 1 |
| abstract_inverted_index.advance | 130 |
| abstract_inverted_index.applied | 75 |
| abstract_inverted_index.between | 149 |
| abstract_inverted_index.devices | 94 |
| abstract_inverted_index.forest, | 83 |
| abstract_inverted_index.machine | 33, 125 |
| abstract_inverted_index.method, | 43, 81 |
| abstract_inverted_index.methods | 3, 35 |
| abstract_inverted_index.predict | 5 |
| abstract_inverted_index.provide | 38 |
| abstract_inverted_index.scores, | 105 |
| abstract_inverted_index.Additive | 45 |
| abstract_inverted_index.Although | 31 |
| abstract_inverted_index.Bayesian | 44 |
| abstract_inverted_index.activity | 7, 72, 137, 154 |
| abstract_inverted_index.devices. | 15 |
| abstract_inverted_index.evaluate | 62, 146 |
| abstract_inverted_index.learning | 2, 34, 126 |
| abstract_inverted_index.matrices | 108 |
| abstract_inverted_index.outcomes | 8 |
| abstract_inverted_index.physical | 6, 29, 71, 136, 153 |
| abstract_inverted_index.quantify | 50 |
| abstract_inverted_index.research | 144 |
| abstract_inverted_index.wearable | 14, 93 |
| abstract_inverted_index.[Purpose] | 0 |
| abstract_inverted_index.accuracy, | 103 |
| abstract_inverted_index.activity. | 30 |
| abstract_inverted_index.benchmark | 80 |
| abstract_inverted_index.confusion | 107 |
| abstract_inverted_index.evaluated | 100 |
| abstract_inverted_index.generated | 12, 91 |
| abstract_inverted_index.objective | 59 |
| abstract_inverted_index.posterior | 55 |
| abstract_inverted_index.predicted | 135, 156 |
| abstract_inverted_index.research. | 142 |
| abstract_inverted_index.Regression | 46 |
| abstract_inverted_index.accurately | 4 |
| abstract_inverted_index.comparable | 117 |
| abstract_inverted_index.population | 28 |
| abstract_inverted_index.predicting | 70 |
| abstract_inverted_index.prediction | 39, 102, 118 |
| abstract_inverted_index.predictive | 56 |
| abstract_inverted_index.relatively | 123 |
| abstract_inverted_index.association | 148 |
| abstract_inverted_index.environment | 26, 141, 151 |
| abstract_inverted_index.multinomial | 76 |
| abstract_inverted_index.performance | 64 |
| abstract_inverted_index.traditional | 32 |
| abstract_inverted_index.uncertainty | 52 |
| abstract_inverted_index.demonstrated | 116 |
| abstract_inverted_index.uncertainty, | 40 |
| abstract_inverted_index.accelerometer | 10, 85 |
| abstract_inverted_index.distribution. | 57 |
| abstract_inverted_index.incorporation | 132 |
| abstract_inverted_index.investigation | 19 |
| abstract_inverted_index.participants. | 98 |
| abstract_inverted_index.status.[Methods] | 73 |
| abstract_inverted_index.leave-one-person-out | 110 |
| abstract_inverted_index.performances.[Conclusion] | 119 |
| abstract_inverted_index.cross-validation.[Results] | 111 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.59097398 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |