Quantifying the Uncertainty of Human Activity Recognition Using a Bayesian Machine Learning Method: A Prediction Study Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1101/2023.08.16.23294126
Background Machine learning methods accurately predict physical activity outcomes using accelerometer data generated by wearable devices, thus allowing the investigation of the impact of built environment on population physical activity. While traditional machine learning methods do not provide prediction uncertainty, a new method, Bayesian Additive Regression Trees (BART) can quantify such uncertainty as posterior predictive distribution. We evaluated the performance of BART in predicting physical activity status. Methods We applied multinomial BART and the benchmark method, random forest, to accelerometer data in 25,424 time points, which were generated by wearable devices attached to 37 participants. We evaluated prediction accuracies and confusion matrix using leave-one-out cross-validation. Results BART and random forest demonstrated comparable accuracies in prediction. Conclusions BART is a relatively novel ML method and will advance the incorporation of predicted physical activity status into built environment research. Future research includes the evaluation of the association between the built environment and predicted physical activity with and without accounting for prediction uncertainty.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2023.08.16.23294126
- https://www.medrxiv.org/content/medrxiv/early/2023/08/22/2023.08.16.23294126.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386047552
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386047552Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2023.08.16.23294126Digital Object Identifier
- Title
-
Quantifying the Uncertainty of Human Activity Recognition Using a Bayesian Machine Learning Method: A Prediction StudyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-22Full publication date if available
- Authors
-
Hiroshi Mamiya, Daniel FullerList of authors in order
- Landing page
-
https://doi.org/10.1101/2023.08.16.23294126Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2023/08/22/2023.08.16.23294126.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2023/08/22/2023.08.16.23294126.full.pdfDirect OA link when available
- Concepts
-
Random forest, Machine learning, Computer science, Artificial intelligence, Benchmark (surveying), Bayesian probability, Accelerometer, Wearable computer, Confusion matrix, Activity recognition, Regression, Predictive modelling, Naive Bayes classifier, Support vector machine, Data mining, Statistics, Mathematics, Operating system, Geography, Embedded system, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386047552 |
|---|---|
| doi | https://doi.org/10.1101/2023.08.16.23294126 |
| ids.doi | https://doi.org/10.1101/2023.08.16.23294126 |
| ids.openalex | https://openalex.org/W4386047552 |
| fwci | 0.29749766 |
| type | preprint |
| title | Quantifying the Uncertainty of Human Activity Recognition Using a Bayesian Machine Learning Method: A Prediction Study |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10352 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2737 |
| topics[0].subfield.display_name | Physiology |
| topics[0].display_name | Physical Activity and Health |
| topics[1].id | https://openalex.org/T10298 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Urban Transport and Accessibility |
| topics[2].id | https://openalex.org/T10444 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9846000075340271 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Context-Aware Activity Recognition Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C169258074 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8667269349098206 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[0].display_name | Random forest |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7494996190071106 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6511068344116211 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6461865901947021 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6236699223518372 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C107673813 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6077577471733093 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[5].display_name | Bayesian probability |
| concepts[6].id | https://openalex.org/C89805583 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5733187198638916 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192940 |
| concepts[6].display_name | Accelerometer |
| concepts[7].id | https://openalex.org/C150594956 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5542435646057129 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1334829 |
| concepts[7].display_name | Wearable computer |
| concepts[8].id | https://openalex.org/C138602881 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5383123159408569 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2709591 |
| concepts[8].display_name | Confusion matrix |
| concepts[9].id | https://openalex.org/C121687571 |
| concepts[9].level | 2 |
| concepts[9].score | 0.496268093585968 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4677630 |
| concepts[9].display_name | Activity recognition |
| concepts[10].id | https://openalex.org/C83546350 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4682517945766449 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[10].display_name | Regression |
| concepts[11].id | https://openalex.org/C45804977 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42354536056518555 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[11].display_name | Predictive modelling |
| concepts[12].id | https://openalex.org/C52001869 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4122255742549896 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q812530 |
| concepts[12].display_name | Naive Bayes classifier |
| concepts[13].id | https://openalex.org/C12267149 |
| concepts[13].level | 2 |
| concepts[13].score | 0.41131478548049927 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[13].display_name | Support vector machine |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3473946452140808 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.24850943684577942 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.16366147994995117 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C149635348 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[19].display_name | Embedded system |
| concepts[20].id | https://openalex.org/C13280743 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[20].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/random-forest |
| keywords[0].score | 0.8667269349098206 |
| keywords[0].display_name | Random forest |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.7494996190071106 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6511068344116211 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6461865901947021 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.6236699223518372 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/bayesian-probability |
| keywords[5].score | 0.6077577471733093 |
| keywords[5].display_name | Bayesian probability |
| keywords[6].id | https://openalex.org/keywords/accelerometer |
| keywords[6].score | 0.5733187198638916 |
| keywords[6].display_name | Accelerometer |
| keywords[7].id | https://openalex.org/keywords/wearable-computer |
| keywords[7].score | 0.5542435646057129 |
| keywords[7].display_name | Wearable computer |
| keywords[8].id | https://openalex.org/keywords/confusion-matrix |
| keywords[8].score | 0.5383123159408569 |
| keywords[8].display_name | Confusion matrix |
| keywords[9].id | https://openalex.org/keywords/activity-recognition |
| keywords[9].score | 0.496268093585968 |
| keywords[9].display_name | Activity recognition |
| keywords[10].id | https://openalex.org/keywords/regression |
| keywords[10].score | 0.4682517945766449 |
| keywords[10].display_name | Regression |
| keywords[11].id | https://openalex.org/keywords/predictive-modelling |
| keywords[11].score | 0.42354536056518555 |
| keywords[11].display_name | Predictive modelling |
| keywords[12].id | https://openalex.org/keywords/naive-bayes-classifier |
| keywords[12].score | 0.4122255742549896 |
| keywords[12].display_name | Naive Bayes classifier |
| keywords[13].id | https://openalex.org/keywords/support-vector-machine |
| keywords[13].score | 0.41131478548049927 |
| keywords[13].display_name | Support vector machine |
| keywords[14].id | https://openalex.org/keywords/data-mining |
| keywords[14].score | 0.3473946452140808 |
| keywords[14].display_name | Data mining |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.24850943684577942 |
| keywords[15].display_name | Statistics |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.16366147994995117 |
| keywords[16].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1101/2023.08.16.23294126 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2023/08/22/2023.08.16.23294126.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2023.08.16.23294126 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5034543482 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5711-8558 |
| authorships[0].author.display_name | Hiroshi Mamiya |
| authorships[0].affiliations[0].raw_affiliation_string | Deprtment of Community Helth nd Epidemiology, University of Ssktchewn, Rm 3247 - E wing - Helth Sciences, 104 Clinic Plce, Ssktoon, Ssktchewn, Cnd S7N-2Z4 |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hiroshi Mamiya |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Deprtment of Community Helth nd Epidemiology, University of Ssktchewn, Rm 3247 - E wing - Helth Sciences, 104 Clinic Plce, Ssktoon, Ssktchewn, Cnd S7N-2Z4 |
| authorships[1].author.id | https://openalex.org/A5079996884 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2015-2955 |
| authorships[1].author.display_name | Daniel Fuller |
| authorships[1].affiliations[0].raw_affiliation_string | Deprtment of Community Helth nd Epidemiology, University of Ssktchewn, Rm 3247 - E wing - Helth Sciences, 104 Clinic Plce, Ssktoon, Ssktchewn, Cnd S7N-2Z4 |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Daniel Fuller |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Deprtment of Community Helth nd Epidemiology, University of Ssktchewn, Rm 3247 - E wing - Helth Sciences, 104 Clinic Plce, Ssktoon, Ssktchewn, Cnd S7N-2Z4 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2023/08/22/2023.08.16.23294126.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Quantifying the Uncertainty of Human Activity Recognition Using a Bayesian Machine Learning Method: A Prediction Study |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10352 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2737 |
| primary_topic.subfield.display_name | Physiology |
| primary_topic.display_name | Physical Activity and Health |
| related_works | https://openalex.org/W2765080098, https://openalex.org/W2385749422, https://openalex.org/W2706752825, https://openalex.org/W2747837925, https://openalex.org/W2614491706, https://openalex.org/W3190721986, https://openalex.org/W3203638897, https://openalex.org/W4321635934, https://openalex.org/W1985927271, https://openalex.org/W3212943466 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2023.08.16.23294126 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2023/08/22/2023.08.16.23294126.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2023.08.16.23294126 |
| primary_location.id | doi:10.1101/2023.08.16.23294126 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2023/08/22/2023.08.16.23294126.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2023.08.16.23294126 |
| publication_date | 2023-08-22 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3005355639, https://openalex.org/W3012558084, https://openalex.org/W4315644415, https://openalex.org/W2790240746, https://openalex.org/W3037209593, https://openalex.org/W3101421075, https://openalex.org/W3118929067, https://openalex.org/W2126223139, https://openalex.org/W2977733304, https://openalex.org/W2778988196, https://openalex.org/W2126292488, https://openalex.org/W2036943427, https://openalex.org/W2074276081, https://openalex.org/W2945190891, https://openalex.org/W4281393173, https://openalex.org/W3147173796, https://openalex.org/W4398561900, https://openalex.org/W4312018890, https://openalex.org/W3115199354, https://openalex.org/W2775244970, https://openalex.org/W2042502570, https://openalex.org/W1969630774, https://openalex.org/W4280544497, https://openalex.org/W4285604426, https://openalex.org/W4220747158, https://openalex.org/W2144409155 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 41, 119 |
| abstract_inverted_index.37 | 94 |
| abstract_inverted_index.ML | 122 |
| abstract_inverted_index.We | 57, 69, 96 |
| abstract_inverted_index.as | 53 |
| abstract_inverted_index.by | 14, 89 |
| abstract_inverted_index.do | 36 |
| abstract_inverted_index.in | 63, 82, 114 |
| abstract_inverted_index.is | 118 |
| abstract_inverted_index.of | 21, 24, 61, 129, 143 |
| abstract_inverted_index.on | 27 |
| abstract_inverted_index.to | 79, 93 |
| abstract_inverted_index.and | 73, 100, 108, 124, 150, 155 |
| abstract_inverted_index.can | 49 |
| abstract_inverted_index.for | 158 |
| abstract_inverted_index.new | 42 |
| abstract_inverted_index.not | 37 |
| abstract_inverted_index.the | 19, 22, 59, 74, 127, 141, 144, 147 |
| abstract_inverted_index.BART | 62, 72, 107, 117 |
| abstract_inverted_index.data | 12, 81 |
| abstract_inverted_index.into | 134 |
| abstract_inverted_index.such | 51 |
| abstract_inverted_index.thus | 17 |
| abstract_inverted_index.time | 84 |
| abstract_inverted_index.were | 87 |
| abstract_inverted_index.will | 125 |
| abstract_inverted_index.with | 154 |
| abstract_inverted_index.Trees | 47 |
| abstract_inverted_index.While | 31 |
| abstract_inverted_index.built | 25, 135, 148 |
| abstract_inverted_index.novel | 121 |
| abstract_inverted_index.using | 10, 103 |
| abstract_inverted_index.which | 86 |
| abstract_inverted_index.(BART) | 48 |
| abstract_inverted_index.25,424 | 83 |
| abstract_inverted_index.Future | 138 |
| abstract_inverted_index.forest | 110 |
| abstract_inverted_index.impact | 23 |
| abstract_inverted_index.matrix | 102 |
| abstract_inverted_index.method | 123 |
| abstract_inverted_index.random | 77, 109 |
| abstract_inverted_index.status | 133 |
| abstract_inverted_index.Machine | 2 |
| abstract_inverted_index.Methods | 68 |
| abstract_inverted_index.Results | 106 |
| abstract_inverted_index.advance | 126 |
| abstract_inverted_index.applied | 70 |
| abstract_inverted_index.between | 146 |
| abstract_inverted_index.devices | 91 |
| abstract_inverted_index.forest, | 78 |
| abstract_inverted_index.machine | 33 |
| abstract_inverted_index.method, | 43, 76 |
| abstract_inverted_index.methods | 4, 35 |
| abstract_inverted_index.points, | 85 |
| abstract_inverted_index.predict | 6 |
| abstract_inverted_index.provide | 38 |
| abstract_inverted_index.status. | 67 |
| abstract_inverted_index.without | 156 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Additive | 45 |
| abstract_inverted_index.Bayesian | 44 |
| abstract_inverted_index.activity | 8, 66, 132, 153 |
| abstract_inverted_index.allowing | 18 |
| abstract_inverted_index.attached | 92 |
| abstract_inverted_index.devices, | 16 |
| abstract_inverted_index.includes | 140 |
| abstract_inverted_index.learning | 3, 34 |
| abstract_inverted_index.outcomes | 9 |
| abstract_inverted_index.physical | 7, 29, 65, 131, 152 |
| abstract_inverted_index.quantify | 50 |
| abstract_inverted_index.research | 139 |
| abstract_inverted_index.wearable | 15, 90 |
| abstract_inverted_index.activity. | 30 |
| abstract_inverted_index.benchmark | 75 |
| abstract_inverted_index.confusion | 101 |
| abstract_inverted_index.evaluated | 58, 97 |
| abstract_inverted_index.generated | 13, 88 |
| abstract_inverted_index.posterior | 54 |
| abstract_inverted_index.predicted | 130, 151 |
| abstract_inverted_index.research. | 137 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Regression | 46 |
| abstract_inverted_index.accounting | 157 |
| abstract_inverted_index.accuracies | 99, 113 |
| abstract_inverted_index.accurately | 5 |
| abstract_inverted_index.comparable | 112 |
| abstract_inverted_index.evaluation | 142 |
| abstract_inverted_index.population | 28 |
| abstract_inverted_index.predicting | 64 |
| abstract_inverted_index.prediction | 39, 98, 159 |
| abstract_inverted_index.predictive | 55 |
| abstract_inverted_index.relatively | 120 |
| abstract_inverted_index.Conclusions | 116 |
| abstract_inverted_index.association | 145 |
| abstract_inverted_index.environment | 26, 136, 149 |
| abstract_inverted_index.multinomial | 71 |
| abstract_inverted_index.performance | 60 |
| abstract_inverted_index.prediction. | 115 |
| abstract_inverted_index.traditional | 32 |
| abstract_inverted_index.uncertainty | 52 |
| abstract_inverted_index.demonstrated | 111 |
| abstract_inverted_index.uncertainty, | 40 |
| abstract_inverted_index.uncertainty. | 160 |
| abstract_inverted_index.accelerometer | 11, 80 |
| abstract_inverted_index.distribution. | 56 |
| abstract_inverted_index.incorporation | 128 |
| abstract_inverted_index.investigation | 20 |
| abstract_inverted_index.leave-one-out | 104 |
| abstract_inverted_index.participants. | 95 |
| abstract_inverted_index.cross-validation. | 105 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5034543482 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.54652681 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |