Quantitative accuracy of lung function measurement using parametric response mapping: a virtual imaging study Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1117/12.3006833
Parametric response mapping (PRM) is a voxel-based quantitative CT imaging biomarker that measures the severity of chronic obstructive pulmonary disease (COPD) by analyzing both inspiratory and expiratory CT scans. Although PRM-derived measurements have been shown to predict disease severity and phenotyping, their quantitative accuracy is impacted by the variability of scanner settings and patient conditions. The aim of this study was to evaluate the variability of PRM-based measurements due to the changes in the scanner types and configurations. We developed 10 human chest models with emphysema and air-trapping at end-inspiration and end-expiration states. These models were virtually imaged using a scanner-specific CT simulator (DukeSim) to create CT images at different acquisition settings for energy-integrating and photon-counting CT systems. The CT images were used to estimate PRM maps. The quantified measurements were compared with ground truth values to evaluate the deviations in the measurements. Results showed that PRM measurements varied with scanner type and configurations. The emphysema volume was overestimated by 3 ± 9.5 % (mean ± standard deviation) of the lung volume, and the functional small airway disease (fSAD) volume was underestimated by 7.5±19 % of the lung volume. PRM measurements were more accurate and precise when the acquired settings were photon-counting CT, higher dose, smoother kernel, and larger pixel size. This study demonstrates the development and utility of virtual imaging tools for systematic assessment of a quantitative biomarker accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1117/12.3006833
- OA Status
- green
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393571111
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393571111Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1117/12.3006833Digital Object Identifier
- Title
-
Quantitative accuracy of lung function measurement using parametric response mapping: a virtual imaging studyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-02Full publication date if available
- Authors
-
Amar Kavuri, Fong Chi Ho, Mobina Ghojoghnejad, Saman Sotoudeh‐Paima, Ehsan Samei, W. Paul Segars, Ehsan AbadiList of authors in order
- Landing page
-
https://doi.org/10.1117/12.3006833Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/11100024Direct OA link when available
- Concepts
-
Parametric statistics, Computer science, Lung function, Function (biology), Artificial intelligence, Lung, Mathematics, Statistics, Medicine, Evolutionary biology, Biology, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393571111 |
|---|---|
| doi | https://doi.org/10.1117/12.3006833 |
| ids.doi | https://doi.org/10.1117/12.3006833 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38765483 |
| ids.openalex | https://openalex.org/W4393571111 |
| fwci | 0.0 |
| type | article |
| title | Quantitative accuracy of lung function measurement using parametric response mapping: a virtual imaging study |
| biblio.issue | |
| biblio.volume | 5 |
| biblio.last_page | 8 |
| biblio.first_page | 8 |
| topics[0].id | https://openalex.org/T11993 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9969000220298767 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3107 |
| topics[0].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[0].display_name | Atomic and Subatomic Physics Research |
| topics[1].id | https://openalex.org/T11196 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9939000010490417 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Non-Invasive Vital Sign Monitoring |
| topics[2].id | https://openalex.org/T10143 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.991599977016449 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Chronic Obstructive Pulmonary Disease (COPD) Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C117251300 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6982802152633667 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[0].display_name | Parametric statistics |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5659328103065491 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C3018587741 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5572378635406494 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7886 |
| concepts[2].display_name | Lung function |
| concepts[3].id | https://openalex.org/C14036430 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4750273823738098 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[3].display_name | Function (biology) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.38382893800735474 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2777714996 |
| concepts[5].level | 2 |
| concepts[5].score | 0.1756494641304016 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7886 |
| concepts[5].display_name | Lung |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.16600212454795837 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.13740864396095276 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1317341923713684 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C78458016 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[9].display_name | Evolutionary biology |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/parametric-statistics |
| keywords[0].score | 0.6982802152633667 |
| keywords[0].display_name | Parametric statistics |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5659328103065491 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/lung-function |
| keywords[2].score | 0.5572378635406494 |
| keywords[2].display_name | Lung function |
| keywords[3].id | https://openalex.org/keywords/function |
| keywords[3].score | 0.4750273823738098 |
| keywords[3].display_name | Function (biology) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.38382893800735474 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/lung |
| keywords[5].score | 0.1756494641304016 |
| keywords[5].display_name | Lung |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.16600212454795837 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.13740864396095276 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.1317341923713684 |
| keywords[8].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1117/12.3006833 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Medical Imaging 2024: Computer-Aided Diagnosis |
| locations[0].landing_page_url | https://doi.org/10.1117/12.3006833 |
| locations[1].id | pmid:38765483 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Proceedings of SPIE--the International Society for Optical Engineering |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38765483 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11100024 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Proc SPIE Int Soc Opt Eng |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11100024 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5057032078 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-8325-3207 |
| authorships[0].author.display_name | Amar Kavuri |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[0].affiliations[0].raw_affiliation_string | Duke Univ. (United States) |
| authorships[0].institutions[0].id | https://openalex.org/I170897317 |
| authorships[0].institutions[0].ror | https://ror.org/00py81415 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Duke University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Amar Kavuri |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Duke Univ. (United States) |
| authorships[1].author.id | https://openalex.org/A5048899232 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Fong Chi Ho |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[1].affiliations[0].raw_affiliation_string | Duke Univ. (United States) |
| authorships[1].institutions[0].id | https://openalex.org/I170897317 |
| authorships[1].institutions[0].ror | https://ror.org/00py81415 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Duke University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fong Chi Ho |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Duke Univ. (United States) |
| authorships[2].author.id | https://openalex.org/A5094332681 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mobina Ghojoghnejad |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[2].affiliations[0].raw_affiliation_string | Duke Univ. (United States) |
| authorships[2].institutions[0].id | https://openalex.org/I170897317 |
| authorships[2].institutions[0].ror | https://ror.org/00py81415 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Duke University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mobina Ghojogh-Nejad |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Duke Univ. (United States) |
| authorships[3].author.id | https://openalex.org/A5027879509 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0170-2541 |
| authorships[3].author.display_name | Saman Sotoudeh‐Paima |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[3].affiliations[0].raw_affiliation_string | Duke Univ. (United States) |
| authorships[3].institutions[0].id | https://openalex.org/I170897317 |
| authorships[3].institutions[0].ror | https://ror.org/00py81415 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Duke University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Saman Sotoudeh-Paima |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Duke Univ. (United States) |
| authorships[4].author.id | https://openalex.org/A5021555712 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7451-3309 |
| authorships[4].author.display_name | Ehsan Samei |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[4].affiliations[0].raw_affiliation_string | Duke Univ. (United States) |
| authorships[4].institutions[0].id | https://openalex.org/I170897317 |
| authorships[4].institutions[0].ror | https://ror.org/00py81415 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Duke University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ehsan Samei |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Duke Univ. (United States) |
| authorships[5].author.id | https://openalex.org/A5046139669 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3687-5733 |
| authorships[5].author.display_name | W. Paul Segars |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[5].affiliations[0].raw_affiliation_string | Duke Univ. (United States) |
| authorships[5].institutions[0].id | https://openalex.org/I170897317 |
| authorships[5].institutions[0].ror | https://ror.org/00py81415 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Duke University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | William P. Segars |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Duke Univ. (United States) |
| authorships[6].author.id | https://openalex.org/A5076208686 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9123-5854 |
| authorships[6].author.display_name | Ehsan Abadi |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[6].affiliations[0].raw_affiliation_string | Duke Univ. (United States) |
| authorships[6].institutions[0].id | https://openalex.org/I170897317 |
| authorships[6].institutions[0].ror | https://ror.org/00py81415 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Duke University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ehsan Abadi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Duke Univ. (United States) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11100024 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Quantitative accuracy of lung function measurement using parametric response mapping: a virtual imaging study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11993 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9969000220298767 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3107 |
| primary_topic.subfield.display_name | Atomic and Molecular Physics, and Optics |
| primary_topic.display_name | Atomic and Subatomic Physics Research |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W4395014643 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:11100024 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Proc SPIE Int Soc Opt Eng |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11100024 |
| primary_location.id | doi:10.1117/12.3006833 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Medical Imaging 2024: Computer-Aided Diagnosis |
| primary_location.landing_page_url | https://doi.org/10.1117/12.3006833 |
| publication_date | 2024-04-02 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2114086696, https://openalex.org/W2746720180, https://openalex.org/W2896441775, https://openalex.org/W2087387762, https://openalex.org/W2088698687, https://openalex.org/W2313778452, https://openalex.org/W2008585312, https://openalex.org/W4252921722, https://openalex.org/W1990368410, https://openalex.org/W2220611974, https://openalex.org/W3015379061, https://openalex.org/W4310525787, https://openalex.org/W2771590529, https://openalex.org/W6854589791, https://openalex.org/W6838933432, https://openalex.org/W2766554293, https://openalex.org/W1970928383, https://openalex.org/W6815603092, https://openalex.org/W4200409436, https://openalex.org/W4220798841, https://openalex.org/W3197941794, https://openalex.org/W4312154588, https://openalex.org/W6725307205, https://openalex.org/W4283328413, https://openalex.org/W4383218413, https://openalex.org/W2904574677, https://openalex.org/W2571384411, https://openalex.org/W4291238401, https://openalex.org/W4295507183 |
| referenced_works_count | 29 |
| abstract_inverted_index.% | 163, 184 |
| abstract_inverted_index.3 | 160 |
| abstract_inverted_index.a | 5, 99, 226 |
| abstract_inverted_index.10 | 80 |
| abstract_inverted_index.CT | 8, 27, 101, 106, 116, 119 |
| abstract_inverted_index.We | 78 |
| abstract_inverted_index.at | 88, 108 |
| abstract_inverted_index.by | 21, 46, 159, 182 |
| abstract_inverted_index.in | 72, 140 |
| abstract_inverted_index.is | 4, 44 |
| abstract_inverted_index.of | 15, 49, 57, 65, 168, 185, 218, 225 |
| abstract_inverted_index.to | 35, 61, 69, 104, 123, 136 |
| abstract_inverted_index.± | 161, 165 |
| abstract_inverted_index.9.5 | 162 |
| abstract_inverted_index.CT, | 202 |
| abstract_inverted_index.PRM | 125, 146, 189 |
| abstract_inverted_index.The | 55, 118, 127, 154 |
| abstract_inverted_index.aim | 56 |
| abstract_inverted_index.and | 25, 39, 52, 76, 86, 90, 114, 152, 172, 194, 207, 216 |
| abstract_inverted_index.due | 68 |
| abstract_inverted_index.for | 112, 222 |
| abstract_inverted_index.the | 13, 47, 63, 70, 73, 138, 141, 169, 173, 186, 197, 214 |
| abstract_inverted_index.was | 60, 157, 180 |
| abstract_inverted_index.This | 211 |
| abstract_inverted_index.been | 33 |
| abstract_inverted_index.both | 23 |
| abstract_inverted_index.have | 32 |
| abstract_inverted_index.lung | 170, 187 |
| abstract_inverted_index.more | 192 |
| abstract_inverted_index.that | 11, 145 |
| abstract_inverted_index.this | 58 |
| abstract_inverted_index.type | 151 |
| abstract_inverted_index.used | 122 |
| abstract_inverted_index.were | 95, 121, 130, 191, 200 |
| abstract_inverted_index.when | 196 |
| abstract_inverted_index.with | 84, 132, 149 |
| abstract_inverted_index.(PRM) | 3 |
| abstract_inverted_index.(mean | 164 |
| abstract_inverted_index.These | 93 |
| abstract_inverted_index.chest | 82 |
| abstract_inverted_index.dose, | 204 |
| abstract_inverted_index.human | 81 |
| abstract_inverted_index.maps. | 126 |
| abstract_inverted_index.pixel | 209 |
| abstract_inverted_index.shown | 34 |
| abstract_inverted_index.size. | 210 |
| abstract_inverted_index.small | 175 |
| abstract_inverted_index.study | 59, 212 |
| abstract_inverted_index.their | 41 |
| abstract_inverted_index.tools | 221 |
| abstract_inverted_index.truth | 134 |
| abstract_inverted_index.types | 75 |
| abstract_inverted_index.using | 98 |
| abstract_inverted_index.(COPD) | 20 |
| abstract_inverted_index.(fSAD) | 178 |
| abstract_inverted_index.airway | 176 |
| abstract_inverted_index.create | 105 |
| abstract_inverted_index.ground | 133 |
| abstract_inverted_index.higher | 203 |
| abstract_inverted_index.imaged | 97 |
| abstract_inverted_index.images | 107, 120 |
| abstract_inverted_index.larger | 208 |
| abstract_inverted_index.models | 83, 94 |
| abstract_inverted_index.scans. | 28 |
| abstract_inverted_index.showed | 144 |
| abstract_inverted_index.values | 135 |
| abstract_inverted_index.varied | 148 |
| abstract_inverted_index.volume | 156, 179 |
| abstract_inverted_index.7.5±19 | 183 |
| abstract_inverted_index.Results | 143 |
| abstract_inverted_index.changes | 71 |
| abstract_inverted_index.chronic | 16 |
| abstract_inverted_index.disease | 19, 37, 177 |
| abstract_inverted_index.imaging | 9, 220 |
| abstract_inverted_index.kernel, | 206 |
| abstract_inverted_index.mapping | 2 |
| abstract_inverted_index.patient | 53 |
| abstract_inverted_index.precise | 195 |
| abstract_inverted_index.predict | 36 |
| abstract_inverted_index.scanner | 50, 74, 150 |
| abstract_inverted_index.states. | 92 |
| abstract_inverted_index.utility | 217 |
| abstract_inverted_index.virtual | 219 |
| abstract_inverted_index.volume, | 171 |
| abstract_inverted_index.volume. | 188 |
| abstract_inverted_index.Although | 29 |
| abstract_inverted_index.accuracy | 43 |
| abstract_inverted_index.accurate | 193 |
| abstract_inverted_index.acquired | 198 |
| abstract_inverted_index.compared | 131 |
| abstract_inverted_index.estimate | 124 |
| abstract_inverted_index.evaluate | 62, 137 |
| abstract_inverted_index.impacted | 45 |
| abstract_inverted_index.measures | 12 |
| abstract_inverted_index.response | 1 |
| abstract_inverted_index.settings | 51, 111, 199 |
| abstract_inverted_index.severity | 14, 38 |
| abstract_inverted_index.smoother | 205 |
| abstract_inverted_index.standard | 166 |
| abstract_inverted_index.systems. | 117 |
| abstract_inverted_index.(DukeSim) | 103 |
| abstract_inverted_index.PRM-based | 66 |
| abstract_inverted_index.accuracy. | 229 |
| abstract_inverted_index.analyzing | 22 |
| abstract_inverted_index.biomarker | 10, 228 |
| abstract_inverted_index.developed | 79 |
| abstract_inverted_index.different | 109 |
| abstract_inverted_index.emphysema | 85, 155 |
| abstract_inverted_index.pulmonary | 18 |
| abstract_inverted_index.simulator | 102 |
| abstract_inverted_index.virtually | 96 |
| abstract_inverted_index.Parametric | 0 |
| abstract_inverted_index.assessment | 224 |
| abstract_inverted_index.deviation) | 167 |
| abstract_inverted_index.deviations | 139 |
| abstract_inverted_index.expiratory | 26 |
| abstract_inverted_index.functional | 174 |
| abstract_inverted_index.quantified | 128 |
| abstract_inverted_index.systematic | 223 |
| abstract_inverted_index.PRM-derived | 30 |
| abstract_inverted_index.acquisition | 110 |
| abstract_inverted_index.conditions. | 54 |
| abstract_inverted_index.development | 215 |
| abstract_inverted_index.inspiratory | 24 |
| abstract_inverted_index.obstructive | 17 |
| abstract_inverted_index.variability | 48, 64 |
| abstract_inverted_index.voxel-based | 6 |
| abstract_inverted_index.air-trapping | 87 |
| abstract_inverted_index.demonstrates | 213 |
| abstract_inverted_index.measurements | 31, 67, 129, 147, 190 |
| abstract_inverted_index.phenotyping, | 40 |
| abstract_inverted_index.quantitative | 7, 42, 227 |
| abstract_inverted_index.measurements. | 142 |
| abstract_inverted_index.overestimated | 158 |
| abstract_inverted_index.end-expiration | 91 |
| abstract_inverted_index.underestimated | 181 |
| abstract_inverted_index.configurations. | 77, 153 |
| abstract_inverted_index.end-inspiration | 89 |
| abstract_inverted_index.photon-counting | 115, 201 |
| abstract_inverted_index.scanner-specific | 100 |
| abstract_inverted_index.energy-integrating | 113 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.04953888 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |