Quantitative Analysis of the Fractional Fokker–Planck Levy Equation via a Modified Physics-Informed Neural Network Architecture Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202410.0525.v1
An innovative approach is utilized in this paper to solve the Fractional Fokker–Planck–Levy (FFPL) equation. A hybrid technique is designed by combining the finite difference method (FDM), Adams numerical technique, and physics-informed neural network (PINN) architecture, namely, the FDM-APINN, to solve the fractional Fokker‒Planck‒Levy (FFPL) equation numerically. Two scenarios of the FFPL equation are considered by varying the value of α (i.e., 1.75,1.85). Moreover, three cases of each scenario are numerically studied for different discretized domains with 100,200 and 500 points in x∈[-1,1] and t∈[0,1]. For the FFPL equation, solutions are obtained via the FDM-APINN technique via 1000,2000, and 5000 iterations. The errors, loss function graphs, and statistical tables are presented to validate our claim that the FDM-APINN is a better alternative intelligent technique for handling fractional-order partial differential equations with complex terms. FDM-APINN can be extended by using nongradient-based bioinspired computing for higher-order fractional partial differential equations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202410.0525.v1
- https://www.preprints.org/manuscript/202410.0525/v1/download
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403276387
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403276387Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202410.0525.v1Digital Object Identifier
- Title
-
Quantitative Analysis of the Fractional Fokker–Planck Levy Equation via a Modified Physics-Informed Neural Network ArchitectureWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-08Full publication date if available
- Authors
-
Fazlullah Fazal, Muhammad Sulaiman, David Bassir, Fahad Sameer Alshammari, Ghaylen LaouiniList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202410.0525.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/manuscript/202410.0525/v1/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/manuscript/202410.0525/v1/downloadDirect OA link when available
- Concepts
-
Fokker–Planck equation, Architecture, Artificial neural network, Physics, Statistical physics, Mathematical physics, Applied mathematics, Artificial intelligence, Computer science, Mathematics, Quantum mechanics, Partial differential equation, Art, Visual artsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403276387 |
|---|---|
| doi | https://doi.org/10.20944/preprints202410.0525.v1 |
| ids.doi | https://doi.org/10.20944/preprints202410.0525.v1 |
| ids.openalex | https://openalex.org/W4403276387 |
| fwci | 0.87993467 |
| type | preprint |
| title | Quantitative Analysis of the Fractional Fokker–Planck Levy Equation via a Modified Physics-Informed Neural Network Architecture |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10288 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.98089998960495 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2611 |
| topics[0].subfield.display_name | Modeling and Simulation |
| topics[0].display_name | Fractional Differential Equations Solutions |
| topics[1].id | https://openalex.org/T12261 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9509000182151794 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Statistical Mechanics and Entropy |
| topics[2].id | https://openalex.org/T11270 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9345999956130981 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2002 |
| topics[2].subfield.display_name | Economics and Econometrics |
| topics[2].display_name | Complex Systems and Time Series Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C69123182 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8295120000839233 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q891766 |
| concepts[0].display_name | Fokker–Planck equation |
| concepts[1].id | https://openalex.org/C123657996 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5906994342803955 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[1].display_name | Architecture |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4899434447288513 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C121332964 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4860959053039551 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[3].display_name | Physics |
| concepts[4].id | https://openalex.org/C121864883 |
| concepts[4].level | 1 |
| concepts[4].score | 0.46661773324012756 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[4].display_name | Statistical physics |
| concepts[5].id | https://openalex.org/C37914503 |
| concepts[5].level | 1 |
| concepts[5].score | 0.45739564299583435 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q156495 |
| concepts[5].display_name | Mathematical physics |
| concepts[6].id | https://openalex.org/C28826006 |
| concepts[6].level | 1 |
| concepts[6].score | 0.39551329612731934 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[6].display_name | Applied mathematics |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.32164454460144043 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.296611487865448 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2590698003768921 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13883697986602783 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| concepts[11].id | https://openalex.org/C93779851 |
| concepts[11].level | 2 |
| concepts[11].score | 0.11731919646263123 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q271977 |
| concepts[11].display_name | Partial differential equation |
| concepts[12].id | https://openalex.org/C142362112 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[12].display_name | Art |
| concepts[13].id | https://openalex.org/C153349607 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[13].display_name | Visual arts |
| keywords[0].id | https://openalex.org/keywords/fokker–planck-equation |
| keywords[0].score | 0.8295120000839233 |
| keywords[0].display_name | Fokker–Planck equation |
| keywords[1].id | https://openalex.org/keywords/architecture |
| keywords[1].score | 0.5906994342803955 |
| keywords[1].display_name | Architecture |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.4899434447288513 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/physics |
| keywords[3].score | 0.4860959053039551 |
| keywords[3].display_name | Physics |
| keywords[4].id | https://openalex.org/keywords/statistical-physics |
| keywords[4].score | 0.46661773324012756 |
| keywords[4].display_name | Statistical physics |
| keywords[5].id | https://openalex.org/keywords/mathematical-physics |
| keywords[5].score | 0.45739564299583435 |
| keywords[5].display_name | Mathematical physics |
| keywords[6].id | https://openalex.org/keywords/applied-mathematics |
| keywords[6].score | 0.39551329612731934 |
| keywords[6].display_name | Applied mathematics |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.32164454460144043 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.296611487865448 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.2590698003768921 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[10].score | 0.13883697986602783 |
| keywords[10].display_name | Quantum mechanics |
| keywords[11].id | https://openalex.org/keywords/partial-differential-equation |
| keywords[11].score | 0.11731919646263123 |
| keywords[11].display_name | Partial differential equation |
| language | en |
| locations[0].id | doi:10.20944/preprints202410.0525.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/manuscript/202410.0525/v1/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202410.0525.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5061320677 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Fazlullah Fazal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fazlullah Fazal |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103147179 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4040-6211 |
| authorships[1].author.display_name | Muhammad Sulaiman |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Muhammad Sulaiman |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5022297382 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5364-9992 |
| authorships[2].author.display_name | David Bassir |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | David Bassir |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5086562119 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5402-8960 |
| authorships[3].author.display_name | Fahad Sameer Alshammari |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fahad Sameer Alshammari |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5036086274 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6963-2482 |
| authorships[4].author.display_name | Ghaylen Laouini |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ghaylen Laouini |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/manuscript/202410.0525/v1/download |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Quantitative Analysis of the Fractional Fokker–Planck Levy Equation via a Modified Physics-Informed Neural Network Architecture |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10288 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.98089998960495 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2611 |
| primary_topic.subfield.display_name | Modeling and Simulation |
| primary_topic.display_name | Fractional Differential Equations Solutions |
| related_works | https://openalex.org/W2992409218, https://openalex.org/W1494630543, https://openalex.org/W4388044880, https://openalex.org/W2035936743, https://openalex.org/W4256389389, https://openalex.org/W4320514436, https://openalex.org/W2064571445, https://openalex.org/W2316454864, https://openalex.org/W2043785977, https://openalex.org/W1989512732 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202410.0525.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/manuscript/202410.0525/v1/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202410.0525.v1 |
| primary_location.id | doi:10.20944/preprints202410.0525.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/manuscript/202410.0525/v1/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202410.0525.v1 |
| publication_date | 2024-10-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 15 |
| abstract_inverted_index.a | 119 |
| abstract_inverted_index.An | 0 |
| abstract_inverted_index.be | 135 |
| abstract_inverted_index.by | 20, 55, 137 |
| abstract_inverted_index.in | 5, 81 |
| abstract_inverted_index.is | 3, 18, 118 |
| abstract_inverted_index.of | 49, 59, 66 |
| abstract_inverted_index.to | 8, 39, 111 |
| abstract_inverted_index.α | 60 |
| abstract_inverted_index.500 | 79 |
| abstract_inverted_index.For | 85 |
| abstract_inverted_index.The | 101 |
| abstract_inverted_index.Two | 47 |
| abstract_inverted_index.and | 30, 78, 83, 98, 106 |
| abstract_inverted_index.are | 53, 69, 90, 109 |
| abstract_inverted_index.can | 134 |
| abstract_inverted_index.for | 72, 124, 142 |
| abstract_inverted_index.our | 113 |
| abstract_inverted_index.the | 10, 22, 37, 41, 50, 57, 86, 93, 116 |
| abstract_inverted_index.via | 92, 96 |
| abstract_inverted_index.5000 | 99 |
| abstract_inverted_index.FFPL | 51, 87 |
| abstract_inverted_index.each | 67 |
| abstract_inverted_index.loss | 103 |
| abstract_inverted_index.that | 115 |
| abstract_inverted_index.this | 6 |
| abstract_inverted_index.with | 76, 130 |
| abstract_inverted_index.Adams | 27 |
| abstract_inverted_index.cases | 65 |
| abstract_inverted_index.claim | 114 |
| abstract_inverted_index.paper | 7 |
| abstract_inverted_index.solve | 9, 40 |
| abstract_inverted_index.three | 64 |
| abstract_inverted_index.using | 138 |
| abstract_inverted_index.value | 58 |
| abstract_inverted_index.(FDM), | 26 |
| abstract_inverted_index.(FFPL) | 13, 44 |
| abstract_inverted_index.(PINN) | 34 |
| abstract_inverted_index.(i.e., | 61 |
| abstract_inverted_index.better | 120 |
| abstract_inverted_index.finite | 23 |
| abstract_inverted_index.hybrid | 16 |
| abstract_inverted_index.method | 25 |
| abstract_inverted_index.neural | 32 |
| abstract_inverted_index.points | 80 |
| abstract_inverted_index.tables | 108 |
| abstract_inverted_index.terms. | 132 |
| abstract_inverted_index.100,200 | 77 |
| abstract_inverted_index.complex | 131 |
| abstract_inverted_index.domains | 75 |
| abstract_inverted_index.errors, | 102 |
| abstract_inverted_index.graphs, | 105 |
| abstract_inverted_index.namely, | 36 |
| abstract_inverted_index.network | 33 |
| abstract_inverted_index.partial | 127, 145 |
| abstract_inverted_index.studied | 71 |
| abstract_inverted_index.varying | 56 |
| abstract_inverted_index.approach | 2 |
| abstract_inverted_index.designed | 19 |
| abstract_inverted_index.equation | 45, 52 |
| abstract_inverted_index.extended | 136 |
| abstract_inverted_index.function | 104 |
| abstract_inverted_index.handling | 125 |
| abstract_inverted_index.obtained | 91 |
| abstract_inverted_index.scenario | 68 |
| abstract_inverted_index.utilized | 4 |
| abstract_inverted_index.validate | 112 |
| abstract_inverted_index.FDM-APINN | 94, 117, 133 |
| abstract_inverted_index.Moreover, | 63 |
| abstract_inverted_index.combining | 21 |
| abstract_inverted_index.computing | 141 |
| abstract_inverted_index.different | 73 |
| abstract_inverted_index.equation, | 88 |
| abstract_inverted_index.equation. | 14 |
| abstract_inverted_index.equations | 129 |
| abstract_inverted_index.numerical | 28 |
| abstract_inverted_index.presented | 110 |
| abstract_inverted_index.scenarios | 48 |
| abstract_inverted_index.solutions | 89 |
| abstract_inverted_index.technique | 17, 95, 123 |
| abstract_inverted_index.1000,2000, | 97 |
| abstract_inverted_index.FDM-APINN, | 38 |
| abstract_inverted_index.Fractional | 11 |
| abstract_inverted_index.considered | 54 |
| abstract_inverted_index.difference | 24 |
| abstract_inverted_index.equations. | 147 |
| abstract_inverted_index.fractional | 42, 144 |
| abstract_inverted_index.innovative | 1 |
| abstract_inverted_index.technique, | 29 |
| abstract_inverted_index.t∈[0,1]. | 84 |
| abstract_inverted_index.x∈[-1,1] | 82 |
| abstract_inverted_index.1.75,1.85). | 62 |
| abstract_inverted_index.alternative | 121 |
| abstract_inverted_index.bioinspired | 140 |
| abstract_inverted_index.discretized | 74 |
| abstract_inverted_index.intelligent | 122 |
| abstract_inverted_index.iterations. | 100 |
| abstract_inverted_index.numerically | 70 |
| abstract_inverted_index.statistical | 107 |
| abstract_inverted_index.differential | 128, 146 |
| abstract_inverted_index.higher-order | 143 |
| abstract_inverted_index.numerically. | 46 |
| abstract_inverted_index.architecture, | 35 |
| abstract_inverted_index.fractional-order | 126 |
| abstract_inverted_index.physics-informed | 31 |
| abstract_inverted_index.nongradient-based | 139 |
| abstract_inverted_index.Fokker‒Planck‒Levy | 43 |
| abstract_inverted_index.Fokker–Planck–Levy | 12 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.65161669 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |