Quantitative Detection of Micro Hole Wall Roughness in PCBs Based on Improved U-Net Model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1186/s10033-025-01245-3
The current method for inspecting microholes in printed circuit boards (PCBs) involves preparing slices followed by optical microscope measurements. However, this approach suffers from low detection efficiency, poor reliability, and insufficient measurement stability. Micro-CT enables the observation of the internal structures of the sample without the need for slicing, thereby presenting a promising new method for assessing the quality of microholes in PCBs. This study integrates computer vision technology with computed tomography (CT) to propose a method for detecting microhole wall roughness using a U-Net model and image processing algorithms. This study established an unplated copper PCB CT image dataset and trained an improved U-Net model. Validation of the test set demonstrated that the improved model effectively segmented microholes in the PCB CT images. Subsequently, the roughness of the holes’ walls was assessed using a customized image-processing algorithm. Comparative analysis between CT detection based on various edge detection algorithms and slice detection revealed that CT detection employing the Canny algorithm closely approximates slice detection, yielding range and average errors of 2.92 and 1.64 μm, respectively. Hence, the detection method proposed in this paper offers a novel approach for non-destructive testing of hole wall roughness in the PCB industry.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s10033-025-01245-3
- https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01245-3
- OA Status
- diamond
- Cited By
- 1
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410722027
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410722027Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s10033-025-01245-3Digital Object Identifier
- Title
-
Quantitative Detection of Micro Hole Wall Roughness in PCBs Based on Improved U-Net ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-26Full publication date if available
- Authors
-
Lijuan Zheng, Yonghao Li, Z. J. Sun, Yingyuan Luo, Ying Xu, Jun Wang, Chengyong Wang, Wei XinList of authors in order
- Landing page
-
https://doi.org/10.1186/s10033-025-01245-3Publisher landing page
- PDF URL
-
https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01245-3Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01245-3Direct OA link when available
- Concepts
-
Net (polyhedron), Surface finish, Surface roughness, Materials science, Environmental science, Composite material, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410722027 |
|---|---|
| doi | https://doi.org/10.1186/s10033-025-01245-3 |
| ids.doi | https://doi.org/10.1186/s10033-025-01245-3 |
| ids.openalex | https://openalex.org/W4410722027 |
| fwci | 3.61023173 |
| type | article |
| title | Quantitative Detection of Micro Hole Wall Roughness in PCBs Based on Improved U-Net Model |
| awards[0].id | https://openalex.org/G8111117782 |
| awards[0].funder_id | https://openalex.org/F4320333688 |
| awards[0].display_name | |
| awards[0].funder_award_id | 52122510 |
| awards[0].funder_display_name | National Outstanding Youth Science Fund Project of National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G1265599048 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 52375415 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 38 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T12169 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Non-Destructive Testing Techniques |
| topics[2].id | https://openalex.org/T11606 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.996999979019165 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Infrastructure Maintenance and Monitoring |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320333688 |
| funders[1].ror | |
| funders[1].display_name | National Outstanding Youth Science Fund Project of National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C14166107 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7308183312416077 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q253829 |
| concepts[0].display_name | Net (polyhedron) |
| concepts[1].id | https://openalex.org/C71039073 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5040744543075562 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3439090 |
| concepts[1].display_name | Surface finish |
| concepts[2].id | https://openalex.org/C107365816 |
| concepts[2].level | 2 |
| concepts[2].score | 0.45885542035102844 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q114817 |
| concepts[2].display_name | Surface roughness |
| concepts[3].id | https://openalex.org/C192562407 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4306837022304535 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[3].display_name | Materials science |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4184536933898926 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C159985019 |
| concepts[5].level | 1 |
| concepts[5].score | 0.1799035370349884 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[5].display_name | Composite material |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.16633448004722595 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C2524010 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1579728126525879 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[7].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/net |
| keywords[0].score | 0.7308183312416077 |
| keywords[0].display_name | Net (polyhedron) |
| keywords[1].id | https://openalex.org/keywords/surface-finish |
| keywords[1].score | 0.5040744543075562 |
| keywords[1].display_name | Surface finish |
| keywords[2].id | https://openalex.org/keywords/surface-roughness |
| keywords[2].score | 0.45885542035102844 |
| keywords[2].display_name | Surface roughness |
| keywords[3].id | https://openalex.org/keywords/materials-science |
| keywords[3].score | 0.4306837022304535 |
| keywords[3].display_name | Materials science |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.4184536933898926 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/composite-material |
| keywords[5].score | 0.1799035370349884 |
| keywords[5].display_name | Composite material |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.16633448004722595 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/geometry |
| keywords[7].score | 0.1579728126525879 |
| keywords[7].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1186/s10033-025-01245-3 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4220650901 |
| locations[0].source.issn | 1000-9345, 2192-8258 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1000-9345 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Chinese Journal of Mechanical Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319730 |
| locations[0].source.host_organization_name | China Machine Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319730 |
| locations[0].source.host_organization_lineage_names | China Machine Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01245-3 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Chinese Journal of Mechanical Engineering |
| locations[0].landing_page_url | https://doi.org/10.1186/s10033-025-01245-3 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102324165 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5329-8478 |
| authorships[0].author.display_name | Lijuan Zheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lijuan Zheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101735810 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3729-819X |
| authorships[1].author.display_name | Yonghao Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yonghao Li |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101609506 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4332-5510 |
| authorships[2].author.display_name | Z. J. Sun |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhuangzhuang Sun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076204077 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yingyuan Luo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yangquan Luo |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100652479 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0904-1477 |
| authorships[4].author.display_name | Ying Xu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ying Xu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5115695510 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7437-8503 |
| authorships[5].author.display_name | Jun Wang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jun Wang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101751870 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6785-9491 |
| authorships[6].author.display_name | Chengyong Wang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chengyong Wang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5086311315 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1887-7535 |
| authorships[7].author.display_name | Wei Xin |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Xin Wei |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01245-3 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Quantitative Detection of Micro Hole Wall Roughness in PCBs Based on Improved U-Net Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2386922414, https://openalex.org/W4313638943, https://openalex.org/W1966522691, https://openalex.org/W4304014137, https://openalex.org/W3034740403, https://openalex.org/W2032025132, https://openalex.org/W4297916609, https://openalex.org/W2349732462, https://openalex.org/W2106541163, https://openalex.org/W1988381798 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1186/s10033-025-01245-3 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4220650901 |
| best_oa_location.source.issn | 1000-9345, 2192-8258 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1000-9345 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Chinese Journal of Mechanical Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319730 |
| best_oa_location.source.host_organization_name | China Machine Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319730 |
| best_oa_location.source.host_organization_lineage_names | China Machine Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01245-3 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Chinese Journal of Mechanical Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s10033-025-01245-3 |
| primary_location.id | doi:10.1186/s10033-025-01245-3 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4220650901 |
| primary_location.source.issn | 1000-9345, 2192-8258 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1000-9345 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Chinese Journal of Mechanical Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319730 |
| primary_location.source.host_organization_name | China Machine Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319730 |
| primary_location.source.host_organization_lineage_names | China Machine Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01245-3 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Chinese Journal of Mechanical Engineering |
| primary_location.landing_page_url | https://doi.org/10.1186/s10033-025-01245-3 |
| publication_date | 2025-05-26 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4311357677, https://openalex.org/W4361279413, https://openalex.org/W4392553609, https://openalex.org/W4286355265, https://openalex.org/W2943694032, https://openalex.org/W2921507335, https://openalex.org/W3193024002, https://openalex.org/W2885496266, https://openalex.org/W4404032362, https://openalex.org/W3160653769, https://openalex.org/W4320712931, https://openalex.org/W4297089455, https://openalex.org/W4226378622, https://openalex.org/W2755523689, https://openalex.org/W2790166772, https://openalex.org/W3117946660, https://openalex.org/W3045805172, https://openalex.org/W3186516637, https://openalex.org/W4386404700, https://openalex.org/W3195442750, https://openalex.org/W3092466439, https://openalex.org/W4381982863, https://openalex.org/W2099940536, https://openalex.org/W4400315968, https://openalex.org/W3134828566, https://openalex.org/W1566664242, https://openalex.org/W2999231037, https://openalex.org/W4288056892, https://openalex.org/W3123484656, https://openalex.org/W4378673799, https://openalex.org/W4225146592, https://openalex.org/W2941356554, https://openalex.org/W4375843905 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 52, 76, 84, 135, 185 |
| abstract_inverted_index.CT | 98, 123, 142, 155 |
| abstract_inverted_index.an | 94, 103 |
| abstract_inverted_index.by | 16 |
| abstract_inverted_index.in | 7, 62, 120, 181, 195 |
| abstract_inverted_index.of | 38, 42, 60, 108, 128, 170, 191 |
| abstract_inverted_index.on | 145 |
| abstract_inverted_index.to | 74 |
| abstract_inverted_index.PCB | 97, 122, 197 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 30, 87, 101, 150, 167, 172 |
| abstract_inverted_index.for | 4, 48, 56, 78, 188 |
| abstract_inverted_index.low | 25 |
| abstract_inverted_index.new | 54 |
| abstract_inverted_index.set | 111 |
| abstract_inverted_index.the | 36, 39, 43, 46, 58, 109, 114, 121, 126, 129, 158, 177, 196 |
| abstract_inverted_index.was | 132 |
| abstract_inverted_index.(CT) | 73 |
| abstract_inverted_index.1.64 | 173 |
| abstract_inverted_index.2.92 | 171 |
| abstract_inverted_index.This | 64, 91 |
| abstract_inverted_index.edge | 147 |
| abstract_inverted_index.from | 24 |
| abstract_inverted_index.hole | 192 |
| abstract_inverted_index.need | 47 |
| abstract_inverted_index.poor | 28 |
| abstract_inverted_index.test | 110 |
| abstract_inverted_index.that | 113, 154 |
| abstract_inverted_index.this | 21, 182 |
| abstract_inverted_index.wall | 81, 193 |
| abstract_inverted_index.with | 70 |
| abstract_inverted_index.μm, | 174 |
| abstract_inverted_index.Canny | 159 |
| abstract_inverted_index.PCBs. | 63 |
| abstract_inverted_index.U-Net | 85, 105 |
| abstract_inverted_index.based | 144 |
| abstract_inverted_index.image | 88, 99 |
| abstract_inverted_index.model | 86, 116 |
| abstract_inverted_index.novel | 186 |
| abstract_inverted_index.paper | 183 |
| abstract_inverted_index.range | 166 |
| abstract_inverted_index.slice | 151, 163 |
| abstract_inverted_index.study | 65, 92 |
| abstract_inverted_index.using | 83, 134 |
| abstract_inverted_index.walls | 131 |
| abstract_inverted_index.(PCBs) | 11 |
| abstract_inverted_index.Hence, | 176 |
| abstract_inverted_index.boards | 10 |
| abstract_inverted_index.copper | 96 |
| abstract_inverted_index.errors | 169 |
| abstract_inverted_index.method | 3, 55, 77, 179 |
| abstract_inverted_index.model. | 106 |
| abstract_inverted_index.offers | 184 |
| abstract_inverted_index.sample | 44 |
| abstract_inverted_index.slices | 14 |
| abstract_inverted_index.vision | 68 |
| abstract_inverted_index.average | 168 |
| abstract_inverted_index.between | 141 |
| abstract_inverted_index.circuit | 9 |
| abstract_inverted_index.closely | 161 |
| abstract_inverted_index.current | 2 |
| abstract_inverted_index.dataset | 100 |
| abstract_inverted_index.enables | 35 |
| abstract_inverted_index.images. | 124 |
| abstract_inverted_index.optical | 17 |
| abstract_inverted_index.printed | 8 |
| abstract_inverted_index.propose | 75 |
| abstract_inverted_index.quality | 59 |
| abstract_inverted_index.suffers | 23 |
| abstract_inverted_index.testing | 190 |
| abstract_inverted_index.thereby | 50 |
| abstract_inverted_index.trained | 102 |
| abstract_inverted_index.various | 146 |
| abstract_inverted_index.without | 45 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.Micro-CT | 34 |
| abstract_inverted_index.analysis | 140 |
| abstract_inverted_index.approach | 22, 187 |
| abstract_inverted_index.assessed | 133 |
| abstract_inverted_index.computed | 71 |
| abstract_inverted_index.computer | 67 |
| abstract_inverted_index.followed | 15 |
| abstract_inverted_index.holes’ | 130 |
| abstract_inverted_index.improved | 104, 115 |
| abstract_inverted_index.internal | 40 |
| abstract_inverted_index.involves | 12 |
| abstract_inverted_index.proposed | 180 |
| abstract_inverted_index.revealed | 153 |
| abstract_inverted_index.slicing, | 49 |
| abstract_inverted_index.unplated | 95 |
| abstract_inverted_index.yielding | 165 |
| abstract_inverted_index.algorithm | 160 |
| abstract_inverted_index.assessing | 57 |
| abstract_inverted_index.detecting | 79 |
| abstract_inverted_index.detection | 26, 143, 148, 152, 156, 178 |
| abstract_inverted_index.employing | 157 |
| abstract_inverted_index.industry. | 198 |
| abstract_inverted_index.microhole | 80 |
| abstract_inverted_index.preparing | 13 |
| abstract_inverted_index.promising | 53 |
| abstract_inverted_index.roughness | 82, 127, 194 |
| abstract_inverted_index.segmented | 118 |
| abstract_inverted_index.Validation | 107 |
| abstract_inverted_index.algorithm. | 138 |
| abstract_inverted_index.algorithms | 149 |
| abstract_inverted_index.customized | 136 |
| abstract_inverted_index.detection, | 164 |
| abstract_inverted_index.inspecting | 5 |
| abstract_inverted_index.integrates | 66 |
| abstract_inverted_index.microholes | 6, 61, 119 |
| abstract_inverted_index.microscope | 18 |
| abstract_inverted_index.presenting | 51 |
| abstract_inverted_index.processing | 89 |
| abstract_inverted_index.stability. | 33 |
| abstract_inverted_index.structures | 41 |
| abstract_inverted_index.technology | 69 |
| abstract_inverted_index.tomography | 72 |
| abstract_inverted_index.Comparative | 139 |
| abstract_inverted_index.algorithms. | 90 |
| abstract_inverted_index.effectively | 117 |
| abstract_inverted_index.efficiency, | 27 |
| abstract_inverted_index.established | 93 |
| abstract_inverted_index.measurement | 32 |
| abstract_inverted_index.observation | 37 |
| abstract_inverted_index.approximates | 162 |
| abstract_inverted_index.demonstrated | 112 |
| abstract_inverted_index.insufficient | 31 |
| abstract_inverted_index.reliability, | 29 |
| abstract_inverted_index.Subsequently, | 125 |
| abstract_inverted_index.measurements. | 19 |
| abstract_inverted_index.respectively. | 175 |
| abstract_inverted_index.non-destructive | 189 |
| abstract_inverted_index.image-processing | 137 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.8695603 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |