Quantitative results of the Romanov type representation functions Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2204.12287
For $α>0$, let $$\mathscr{A}=\{ a_1(\log m)^α$ for infinitely many positive integers $m$ and $\ell_m<0.9\log\log m$ for sufficiently integers $m$. Suppose further that $(\ell_i,a_i)=1$ for all $i$. For any $n$, let $f_{\mathscr{A},\mathscr{L}}(n)$ be the number of the available representations listed below $$\ell_in=p+a_i \quad \left(1\le i\le \mathscr{A}(n)\right),$$ where $p$ is a prime number. It is proved that $$\limsup_{n\to \infty } \frac{f_{\mathscr{A},\mathscr{L}}(n)}{\log\log n}>0,$$ which covers an old result of Erd\H os in 1950 by taking $a_i=2^i$ and $\ell_i=1$. One key ingredient in the argument is a technical lemma established here which illustrates how to pick out the admissible parts of an arbitrarily given set of distinct linear functions. The proof then reduces to the verifications of a hypothesis involving well--distributed sets introduced by Maynard, which of course would be the other key ingredient in the argument.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2204.12287
- https://arxiv.org/pdf/2204.12287
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224984779
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224984779Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2204.12287Digital Object Identifier
- Title
-
Quantitative results of the Romanov type representation functionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-25Full publication date if available
- Authors
-
Yong-Gao Chen, Yuchen DingList of authors in order
- Landing page
-
https://arxiv.org/abs/2204.12287Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2204.12287Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2204.12287Direct OA link when available
- Concepts
-
Combinatorics, Mathematics, Number theory, Type (biology), Prime (order theory), Prime number, Discrete mathematics, Ecology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224984779 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2204.12287 |
| ids.doi | https://doi.org/10.48550/arxiv.2204.12287 |
| ids.openalex | https://openalex.org/W4224984779 |
| fwci | |
| type | preprint |
| title | Quantitative results of the Romanov type representation functions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11329 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.972000002861023 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2607 |
| topics[0].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[0].display_name | Limits and Structures in Graph Theory |
| topics[1].id | https://openalex.org/T12002 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9495999813079834 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computability, Logic, AI Algorithms |
| topics[2].id | https://openalex.org/T13720 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9086999893188477 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Benford’s Law and Fraud Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C114614502 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6899545192718506 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[0].display_name | Combinatorics |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6687042713165283 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C169654258 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5335289239883423 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12479 |
| concepts[2].display_name | Number theory |
| concepts[3].id | https://openalex.org/C2777299769 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5217610001564026 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3707858 |
| concepts[3].display_name | Type (biology) |
| concepts[4].id | https://openalex.org/C184992742 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4898926615715027 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7243229 |
| concepts[4].display_name | Prime (order theory) |
| concepts[5].id | https://openalex.org/C113429393 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44599512219429016 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q49008 |
| concepts[5].display_name | Prime number |
| concepts[6].id | https://openalex.org/C118615104 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3477938771247864 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[6].display_name | Discrete mathematics |
| concepts[7].id | https://openalex.org/C18903297 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[7].display_name | Ecology |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/combinatorics |
| keywords[0].score | 0.6899545192718506 |
| keywords[0].display_name | Combinatorics |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.6687042713165283 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/number-theory |
| keywords[2].score | 0.5335289239883423 |
| keywords[2].display_name | Number theory |
| keywords[3].id | https://openalex.org/keywords/type |
| keywords[3].score | 0.5217610001564026 |
| keywords[3].display_name | Type (biology) |
| keywords[4].id | https://openalex.org/keywords/prime |
| keywords[4].score | 0.4898926615715027 |
| keywords[4].display_name | Prime (order theory) |
| keywords[5].id | https://openalex.org/keywords/prime-number |
| keywords[5].score | 0.44599512219429016 |
| keywords[5].display_name | Prime number |
| keywords[6].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[6].score | 0.3477938771247864 |
| keywords[6].display_name | Discrete mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2204.12287 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2204.12287 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2204.12287 |
| locations[1].id | doi:10.48550/arxiv.2204.12287 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2204.12287 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5071548410 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8775-431X |
| authorships[0].author.display_name | Yong-Gao Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Yong-Gao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5065216100 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7016-309X |
| authorships[1].author.display_name | Yuchen Ding |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ding, Yuchen |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2204.12287 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Quantitative results of the Romanov type representation functions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11329 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.972000002861023 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2607 |
| primary_topic.subfield.display_name | Discrete Mathematics and Combinatorics |
| primary_topic.display_name | Limits and Structures in Graph Theory |
| related_works | https://openalex.org/W82694235, https://openalex.org/W2003101256, https://openalex.org/W2014041394, https://openalex.org/W4281800544, https://openalex.org/W1977732666, https://openalex.org/W306052976, https://openalex.org/W2046177514, https://openalex.org/W3135799910, https://openalex.org/W4387070058, https://openalex.org/W4315481288 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2204.12287 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2204.12287 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2204.12287 |
| primary_location.id | pmh:oai:arXiv.org:2204.12287 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2204.12287 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2204.12287 |
| publication_date | 2022-04-25 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 48, 82, 113 |
| abstract_inverted_index.} | 57 |
| abstract_inverted_index.It | 51 |
| abstract_inverted_index.an | 62, 97 |
| abstract_inverted_index.be | 31, 125 |
| abstract_inverted_index.by | 70, 119 |
| abstract_inverted_index.in | 68, 78, 130 |
| abstract_inverted_index.is | 47, 52, 81 |
| abstract_inverted_index.m$ | 14 |
| abstract_inverted_index.of | 34, 65, 96, 101, 112, 122 |
| abstract_inverted_index.os | 67 |
| abstract_inverted_index.to | 90, 109 |
| abstract_inverted_index.$m$ | 11 |
| abstract_inverted_index.$p$ | 46 |
| abstract_inverted_index.For | 0, 26 |
| abstract_inverted_index.One | 75 |
| abstract_inverted_index.The | 105 |
| abstract_inverted_index.all | 24 |
| abstract_inverted_index.and | 12, 73 |
| abstract_inverted_index.any | 27 |
| abstract_inverted_index.for | 6, 15, 23 |
| abstract_inverted_index.how | 89 |
| abstract_inverted_index.key | 76, 128 |
| abstract_inverted_index.let | 2, 29 |
| abstract_inverted_index.old | 63 |
| abstract_inverted_index.out | 92 |
| abstract_inverted_index.set | 100 |
| abstract_inverted_index.the | 32, 35, 79, 93, 110, 126, 131 |
| abstract_inverted_index.$i$. | 25 |
| abstract_inverted_index.$m$. | 18 |
| abstract_inverted_index.$n$, | 28 |
| abstract_inverted_index.1950 | 69 |
| abstract_inverted_index.here | 86 |
| abstract_inverted_index.i\le | 43 |
| abstract_inverted_index.many | 8 |
| abstract_inverted_index.pick | 91 |
| abstract_inverted_index.sets | 117 |
| abstract_inverted_index.that | 21, 54 |
| abstract_inverted_index.then | 107 |
| abstract_inverted_index.Erd\H | 66 |
| abstract_inverted_index.\quad | 41 |
| abstract_inverted_index.below | 39 |
| abstract_inverted_index.given | 99 |
| abstract_inverted_index.lemma | 84 |
| abstract_inverted_index.other | 127 |
| abstract_inverted_index.parts | 95 |
| abstract_inverted_index.prime | 49 |
| abstract_inverted_index.proof | 106 |
| abstract_inverted_index.where | 45 |
| abstract_inverted_index.which | 60, 87, 121 |
| abstract_inverted_index.would | 124 |
| abstract_inverted_index.\infty | 56 |
| abstract_inverted_index.course | 123 |
| abstract_inverted_index.covers | 61 |
| abstract_inverted_index.linear | 103 |
| abstract_inverted_index.listed | 38 |
| abstract_inverted_index.m)^α$ | 5 |
| abstract_inverted_index.number | 33 |
| abstract_inverted_index.proved | 53 |
| abstract_inverted_index.result | 64 |
| abstract_inverted_index.taking | 71 |
| abstract_inverted_index.Suppose | 19 |
| abstract_inverted_index.further | 20 |
| abstract_inverted_index.number. | 50 |
| abstract_inverted_index.reduces | 108 |
| abstract_inverted_index.Maynard, | 120 |
| abstract_inverted_index.a_1(\log | 4 |
| abstract_inverted_index.argument | 80 |
| abstract_inverted_index.distinct | 102 |
| abstract_inverted_index.integers | 10, 17 |
| abstract_inverted_index.positive | 9 |
| abstract_inverted_index.$a_i=2^i$ | 72 |
| abstract_inverted_index.argument. | 132 |
| abstract_inverted_index.available | 36 |
| abstract_inverted_index.involving | 115 |
| abstract_inverted_index.technical | 83 |
| abstract_inverted_index.$α>0$, | 1 |
| abstract_inverted_index.\left(1\le | 42 |
| abstract_inverted_index.admissible | 94 |
| abstract_inverted_index.functions. | 104 |
| abstract_inverted_index.hypothesis | 114 |
| abstract_inverted_index.infinitely | 7 |
| abstract_inverted_index.ingredient | 77, 129 |
| abstract_inverted_index.introduced | 118 |
| abstract_inverted_index.n}>0,$$ | 59 |
| abstract_inverted_index.$\ell_i=1$. | 74 |
| abstract_inverted_index.arbitrarily | 98 |
| abstract_inverted_index.established | 85 |
| abstract_inverted_index.illustrates | 88 |
| abstract_inverted_index.sufficiently | 16 |
| abstract_inverted_index.verifications | 111 |
| abstract_inverted_index.$$\ell_in=p+a_i | 40 |
| abstract_inverted_index.$$\limsup_{n\to | 55 |
| abstract_inverted_index.representations | 37 |
| abstract_inverted_index.$$\mathscr{A}=\{ | 3 |
| abstract_inverted_index.$(\ell_i,a_i)=1$ | 22 |
| abstract_inverted_index.well--distributed | 116 |
| abstract_inverted_index.$\ell_m<0.9\log\log | 13 |
| abstract_inverted_index.\mathscr{A}(n)\right),$$ | 44 |
| abstract_inverted_index.$f_{\mathscr{A},\mathscr{L}}(n)$ | 30 |
| abstract_inverted_index.\frac{f_{\mathscr{A},\mathscr{L}}(n)}{\log\log | 58 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |