Quantum-Enhanced Federated Chaotic Transformer Framework for Ultra-Low Latency and Secure Multi-Site Telesurgery in 6G- Enabled Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-7363876/v1
The next generation of telesurgery demands quantum-resilient, ultra-low latency, and highly secure distributed AI frameworks capable of functioning across heterogeneous clinical sites. Building on prior federated learning-based telesurgery frameworks, this research introduces a Quantum-Enhanced Chaotic Gated Transformer Learning (Q-CGTL) architecture designed for real-time, multi-site surgical procedures in 6G-enabled smart hospital environments. The framework integrates (i) quantum random number generators (QRNGs) for entropy-rich key generation in the chaotic encryption layer, (ii) multi-head chaotic gated transformer (CGT) models optimized for multi-modal data streams (haptics, imaging, vitals), and (iii) 6G spectrum slicing with AI-driven latency control, reducing end-to-end feedback latency to under 1 ms. Additionally, a cross-institutional federated transfer learning module enables privacy-preserving model sharing without raw data exposure. Extensive evaluations using a synthetic Surgical Digital Twin dataset and the CIC-IDS-2023 cyber-attack dataset demonstrate a 99.4% intrusion detection accuracy, a 35% reduction in energy consumption, and near-zero packet loss under adversarial conditions. Statistical security assessments, including NIST entropy tests and post-quantum cryptographic analysis, confirm the robustness of the proposed system against quantum adversaries. This research represents a pivotal advancement towards autonomous, secure, and explainable telesurgery ecosystems capable of scaling across global clinical networks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-7363876/v1
- https://www.researchsquare.com/article/rs-7363876/latest.pdf
- OA Status
- gold
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413800999
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413800999Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-7363876/v1Digital Object Identifier
- Title
-
Quantum-Enhanced Federated Chaotic Transformer Framework for Ultra-Low Latency and Secure Multi-Site Telesurgery in 6G- Enabled NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-28Full publication date if available
- Authors
-
P. Sundaravadivel, Augustian Isaac RList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-7363876/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-7363876/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-7363876/latest.pdfDirect OA link when available
- Concepts
-
Computer science, Chaotic, Computer network, Ultra low power, Quantum, Latency (audio), Distributed computing, Telecommunications, Physics, Power (physics), Power consumption, Artificial intelligence, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413800999 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-7363876/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-7363876/v1 |
| ids.openalex | https://openalex.org/W4413800999 |
| fwci | 0.0 |
| type | preprint |
| title | Quantum-Enhanced Federated Chaotic Transformer Framework for Ultra-Low Latency and Secure Multi-Site Telesurgery in 6G- Enabled Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10232 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Optical Network Technologies |
| topics[1].id | https://openalex.org/T12611 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Reservoir Computing |
| topics[2].id | https://openalex.org/T13052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Molecular Communication and Nanonetworks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6341533660888672 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777052490 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5931950807571411 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5072826 |
| concepts[1].display_name | Chaotic |
| concepts[2].id | https://openalex.org/C31258907 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5108323097229004 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[2].display_name | Computer network |
| concepts[3].id | https://openalex.org/C3017773396 |
| concepts[3].level | 4 |
| concepts[3].score | 0.4730079472064972 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6692774 |
| concepts[3].display_name | Ultra low power |
| concepts[4].id | https://openalex.org/C84114770 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4536759555339813 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q46344 |
| concepts[4].display_name | Quantum |
| concepts[5].id | https://openalex.org/C82876162 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42766350507736206 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17096504 |
| concepts[5].display_name | Latency (audio) |
| concepts[6].id | https://openalex.org/C120314980 |
| concepts[6].level | 1 |
| concepts[6].score | 0.33971917629241943 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[6].display_name | Distributed computing |
| concepts[7].id | https://openalex.org/C76155785 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1851194202899933 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[7].display_name | Telecommunications |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1408189833164215 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C163258240 |
| concepts[9].level | 2 |
| concepts[9].score | 0.1381286382675171 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[9].display_name | Power (physics) |
| concepts[10].id | https://openalex.org/C2984118289 |
| concepts[10].level | 3 |
| concepts[10].score | 0.07525870203971863 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q29954 |
| concepts[10].display_name | Power consumption |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.06598883867263794 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6341533660888672 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/chaotic |
| keywords[1].score | 0.5931950807571411 |
| keywords[1].display_name | Chaotic |
| keywords[2].id | https://openalex.org/keywords/computer-network |
| keywords[2].score | 0.5108323097229004 |
| keywords[2].display_name | Computer network |
| keywords[3].id | https://openalex.org/keywords/ultra-low-power |
| keywords[3].score | 0.4730079472064972 |
| keywords[3].display_name | Ultra low power |
| keywords[4].id | https://openalex.org/keywords/quantum |
| keywords[4].score | 0.4536759555339813 |
| keywords[4].display_name | Quantum |
| keywords[5].id | https://openalex.org/keywords/latency |
| keywords[5].score | 0.42766350507736206 |
| keywords[5].display_name | Latency (audio) |
| keywords[6].id | https://openalex.org/keywords/distributed-computing |
| keywords[6].score | 0.33971917629241943 |
| keywords[6].display_name | Distributed computing |
| keywords[7].id | https://openalex.org/keywords/telecommunications |
| keywords[7].score | 0.1851194202899933 |
| keywords[7].display_name | Telecommunications |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.1408189833164215 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/power |
| keywords[9].score | 0.1381286382675171 |
| keywords[9].display_name | Power (physics) |
| keywords[10].id | https://openalex.org/keywords/power-consumption |
| keywords[10].score | 0.07525870203971863 |
| keywords[10].display_name | Power consumption |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.06598883867263794 |
| keywords[11].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-7363876/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-7363876/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-7363876/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5003876519 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | P. Sundaravadivel |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I85461943 |
| authorships[0].affiliations[0].raw_affiliation_string | Saveetha Engineering Colege |
| authorships[0].institutions[0].id | https://openalex.org/I85461943 |
| authorships[0].institutions[0].ror | https://ror.org/0034me914 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I85461943 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Saveetha University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sundaravadivel P |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Saveetha Engineering Colege |
| authorships[1].author.id | https://openalex.org/A5022935773 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7640-4111 |
| authorships[1].author.display_name | Augustian Isaac R |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I85461943 |
| authorships[1].affiliations[0].raw_affiliation_string | Saveetha Engineering Colege |
| authorships[1].institutions[0].id | https://openalex.org/I85461943 |
| authorships[1].institutions[0].ror | https://ror.org/0034me914 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I85461943 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Saveetha University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Augustian Isaac R |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Saveetha Engineering Colege |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-7363876/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Quantum-Enhanced Federated Chaotic Transformer Framework for Ultra-Low Latency and Secure Multi-Site Telesurgery in 6G- Enabled Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10232 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Optical Network Technologies |
| related_works | https://openalex.org/W2004708907, https://openalex.org/W2377429601, https://openalex.org/W2386043911, https://openalex.org/W3171270255, https://openalex.org/W2368252804, https://openalex.org/W2379367191, https://openalex.org/W2352594230, https://openalex.org/W2112690272, https://openalex.org/W2380540883, https://openalex.org/W1555078768 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-7363876/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-7363876/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7363876/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-7363876/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-7363876/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7363876/v1 |
| publication_date | 2025-08-28 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4412663234, https://openalex.org/W2988683112, https://openalex.org/W2247946197, https://openalex.org/W4353060358, https://openalex.org/W2294775169, https://openalex.org/W1866073360, https://openalex.org/W2099940443, https://openalex.org/W2995022099, https://openalex.org/W4220693827, https://openalex.org/W4297499192, https://openalex.org/W4224284427, https://openalex.org/W4296010576, https://openalex.org/W4297200341, https://openalex.org/W4385245566 |
| referenced_works_count | 14 |
| abstract_inverted_index.1 | 100 |
| abstract_inverted_index.a | 33, 103, 120, 132, 137, 174 |
| abstract_inverted_index.6G | 87 |
| abstract_inverted_index.AI | 14 |
| abstract_inverted_index.in | 47, 65, 140 |
| abstract_inverted_index.of | 4, 17, 164, 185 |
| abstract_inverted_index.on | 24 |
| abstract_inverted_index.to | 98 |
| abstract_inverted_index.(i) | 55 |
| abstract_inverted_index.35% | 138 |
| abstract_inverted_index.The | 1, 52 |
| abstract_inverted_index.and | 10, 85, 126, 143, 157, 180 |
| abstract_inverted_index.for | 42, 61, 78 |
| abstract_inverted_index.key | 63 |
| abstract_inverted_index.ms. | 101 |
| abstract_inverted_index.raw | 114 |
| abstract_inverted_index.the | 66, 127, 162, 165 |
| abstract_inverted_index.(ii) | 70 |
| abstract_inverted_index.NIST | 154 |
| abstract_inverted_index.This | 171 |
| abstract_inverted_index.Twin | 124 |
| abstract_inverted_index.data | 80, 115 |
| abstract_inverted_index.loss | 146 |
| abstract_inverted_index.next | 2 |
| abstract_inverted_index.this | 30 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.(CGT) | 75 |
| abstract_inverted_index.(iii) | 86 |
| abstract_inverted_index.99.4% | 133 |
| abstract_inverted_index.Gated | 36 |
| abstract_inverted_index.gated | 73 |
| abstract_inverted_index.model | 111 |
| abstract_inverted_index.prior | 25 |
| abstract_inverted_index.smart | 49 |
| abstract_inverted_index.tests | 156 |
| abstract_inverted_index.under | 99, 147 |
| abstract_inverted_index.using | 119 |
| abstract_inverted_index.across | 19, 187 |
| abstract_inverted_index.energy | 141 |
| abstract_inverted_index.global | 188 |
| abstract_inverted_index.highly | 11 |
| abstract_inverted_index.layer, | 69 |
| abstract_inverted_index.models | 76 |
| abstract_inverted_index.module | 108 |
| abstract_inverted_index.number | 58 |
| abstract_inverted_index.packet | 145 |
| abstract_inverted_index.random | 57 |
| abstract_inverted_index.secure | 12 |
| abstract_inverted_index.sites. | 22 |
| abstract_inverted_index.system | 167 |
| abstract_inverted_index.(QRNGs) | 60 |
| abstract_inverted_index.Chaotic | 35 |
| abstract_inverted_index.Digital | 123 |
| abstract_inverted_index.against | 168 |
| abstract_inverted_index.capable | 16, 184 |
| abstract_inverted_index.chaotic | 67, 72 |
| abstract_inverted_index.confirm | 161 |
| abstract_inverted_index.dataset | 125, 130 |
| abstract_inverted_index.demands | 6 |
| abstract_inverted_index.enables | 109 |
| abstract_inverted_index.entropy | 155 |
| abstract_inverted_index.latency | 92, 97 |
| abstract_inverted_index.pivotal | 175 |
| abstract_inverted_index.quantum | 56, 169 |
| abstract_inverted_index.scaling | 186 |
| abstract_inverted_index.secure, | 179 |
| abstract_inverted_index.sharing | 112 |
| abstract_inverted_index.slicing | 89 |
| abstract_inverted_index.streams | 81 |
| abstract_inverted_index.towards | 177 |
| abstract_inverted_index.without | 113 |
| abstract_inverted_index.(Q-CGTL) | 39 |
| abstract_inverted_index.Building | 23 |
| abstract_inverted_index.Learning | 38 |
| abstract_inverted_index.Surgical | 122 |
| abstract_inverted_index.clinical | 21, 189 |
| abstract_inverted_index.control, | 93 |
| abstract_inverted_index.designed | 41 |
| abstract_inverted_index.feedback | 96 |
| abstract_inverted_index.hospital | 50 |
| abstract_inverted_index.imaging, | 83 |
| abstract_inverted_index.latency, | 9 |
| abstract_inverted_index.learning | 107 |
| abstract_inverted_index.proposed | 166 |
| abstract_inverted_index.reducing | 94 |
| abstract_inverted_index.research | 31, 172 |
| abstract_inverted_index.security | 151 |
| abstract_inverted_index.spectrum | 88 |
| abstract_inverted_index.surgical | 45 |
| abstract_inverted_index.transfer | 106 |
| abstract_inverted_index.vitals), | 84 |
| abstract_inverted_index.(haptics, | 82 |
| abstract_inverted_index.AI-driven | 91 |
| abstract_inverted_index.Extensive | 117 |
| abstract_inverted_index.accuracy, | 136 |
| abstract_inverted_index.analysis, | 160 |
| abstract_inverted_index.detection | 135 |
| abstract_inverted_index.exposure. | 116 |
| abstract_inverted_index.federated | 26, 105 |
| abstract_inverted_index.framework | 53 |
| abstract_inverted_index.including | 153 |
| abstract_inverted_index.intrusion | 134 |
| abstract_inverted_index.near-zero | 144 |
| abstract_inverted_index.networks. | 190 |
| abstract_inverted_index.optimized | 77 |
| abstract_inverted_index.reduction | 139 |
| abstract_inverted_index.synthetic | 121 |
| abstract_inverted_index.ultra-low | 8 |
| abstract_inverted_index.6G-enabled | 48 |
| abstract_inverted_index.ecosystems | 183 |
| abstract_inverted_index.encryption | 68 |
| abstract_inverted_index.end-to-end | 95 |
| abstract_inverted_index.frameworks | 15 |
| abstract_inverted_index.generation | 3, 64 |
| abstract_inverted_index.generators | 59 |
| abstract_inverted_index.integrates | 54 |
| abstract_inverted_index.introduces | 32 |
| abstract_inverted_index.multi-head | 71 |
| abstract_inverted_index.multi-site | 44 |
| abstract_inverted_index.procedures | 46 |
| abstract_inverted_index.real-time, | 43 |
| abstract_inverted_index.represents | 173 |
| abstract_inverted_index.robustness | 163 |
| abstract_inverted_index.Statistical | 150 |
| abstract_inverted_index.Transformer | 37 |
| abstract_inverted_index.advancement | 176 |
| abstract_inverted_index.adversarial | 148 |
| abstract_inverted_index.autonomous, | 178 |
| abstract_inverted_index.conditions. | 149 |
| abstract_inverted_index.demonstrate | 131 |
| abstract_inverted_index.distributed | 13 |
| abstract_inverted_index.evaluations | 118 |
| abstract_inverted_index.explainable | 181 |
| abstract_inverted_index.frameworks, | 29 |
| abstract_inverted_index.functioning | 18 |
| abstract_inverted_index.multi-modal | 79 |
| abstract_inverted_index.telesurgery | 5, 28, 182 |
| abstract_inverted_index.transformer | 74 |
| abstract_inverted_index.CIC-IDS-2023 | 128 |
| abstract_inverted_index.adversaries. | 170 |
| abstract_inverted_index.architecture | 40 |
| abstract_inverted_index.assessments, | 152 |
| abstract_inverted_index.consumption, | 142 |
| abstract_inverted_index.cyber-attack | 129 |
| abstract_inverted_index.entropy-rich | 62 |
| abstract_inverted_index.post-quantum | 158 |
| abstract_inverted_index.Additionally, | 102 |
| abstract_inverted_index.cryptographic | 159 |
| abstract_inverted_index.environments. | 51 |
| abstract_inverted_index.heterogeneous | 20 |
| abstract_inverted_index.learning-based | 27 |
| abstract_inverted_index.Quantum-Enhanced | 34 |
| abstract_inverted_index.privacy-preserving | 110 |
| abstract_inverted_index.quantum-resilient, | 7 |
| abstract_inverted_index.cross-institutional | 104 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.41955902 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |