Quantum Gene Chain Coding Bidirectional Neural Network for Residual Useful Life Prediction of Rotating Machinery Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-25786/v1
In classical recurrent neural networks, the pre- and post-relationships of time series tend to be neglected so that long-term overall memory is generally inaccessible; meanwhile, the weights are transferred and updated mainly by the gradient descent method, which leads to their low prediction accuracy and high computation cost in the application of residual useful life (RUL) prediction of rotating machinery (RM). In view of this, a quantum gene chain coding bidirectional neural network (QGCCBNN) is proposed to predict RUL of RM in this paper. In our proposed QGCCBNN, the quantum bidirectional transmission mechanism is designed to establish the pre- and post-relationships of time series for readjusting the weight parameters according to the feedback from the output layer, so that higher consistency between the input information and the overall memory of the network can be realized, thus endowing QGCCBNN with better nonlinear approximation ability. Moreover, in order to improve the global optimization ability and convergence speed, the quantum gene chain coding instead of gradient descent method is constructed to transmit and update data, in which the qubit probability amplitude real number coding is adopted and the cosine and sinusoidal qubit probability amplitudes corresponding to the minimum loss function are compared with those of the current time by the phase selection matrix for the directional parallel updating of the weight parameters. On this basis, a new RUL prediction method for RM is proposed, and higher prediction accuracy as well as desirable efficiency can be obtained due to the advantages of QGCCBNN in nonlinear approximation ability and convergence speed. The experimental example for RUL prediction of a double-row roller bearing demonstrates the effectiveness of our proposed method.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-25786/v1
- https://www.researchsquare.com/article/rs-25786/v1.pdf
- OA Status
- green
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4233124933
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4233124933Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-25786/v1Digital Object Identifier
- Title
-
Quantum Gene Chain Coding Bidirectional Neural Network for Residual Useful Life Prediction of Rotating MachineryWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-01Full publication date if available
- Authors
-
Feng Li, Yangyang Cheng, Baoping Tang, Xue‐Ming Zhou, Xiong Rui-pingList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-25786/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-25786/v1.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-25786/v1.pdfDirect OA link when available
- Concepts
-
Computer science, Residual, Gradient descent, Artificial neural network, Algorithm, Coding (social sciences), Nonlinear system, Qubit, Quantum, Mathematics, Control theory (sociology), Applied mathematics, Artificial intelligence, Physics, Statistics, Quantum mechanics, Control (management)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4233124933 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-25786/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-25786/v1 |
| ids.openalex | https://openalex.org/W4233124933 |
| fwci | 0.09752697 |
| type | preprint |
| title | Quantum Gene Chain Coding Bidirectional Neural Network for Residual Useful Life Prediction of Rotating Machinery |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10934 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9685999751091003 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Heat shock proteins research |
| topics[1].id | https://openalex.org/T11062 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9059000015258789 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Gear and Bearing Dynamics Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5898153185844421 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C155512373 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5692541003227234 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[1].display_name | Residual |
| concepts[2].id | https://openalex.org/C153258448 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5027649402618408 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1199743 |
| concepts[2].display_name | Gradient descent |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49662333726882935 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.49340930581092834 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C179518139 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48479121923446655 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5140297 |
| concepts[5].display_name | Coding (social sciences) |
| concepts[6].id | https://openalex.org/C158622935 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46343928575515747 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[6].display_name | Nonlinear system |
| concepts[7].id | https://openalex.org/C203087015 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4413785934448242 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q378201 |
| concepts[7].display_name | Qubit |
| concepts[8].id | https://openalex.org/C84114770 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3961062729358673 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q46344 |
| concepts[8].display_name | Quantum |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3593342900276184 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C47446073 |
| concepts[10].level | 3 |
| concepts[10].score | 0.356344074010849 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[10].display_name | Control theory (sociology) |
| concepts[11].id | https://openalex.org/C28826006 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3448706269264221 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[11].display_name | Applied mathematics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.19136103987693787 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.13904786109924316 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11371579766273499 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C2775924081 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[16].display_name | Control (management) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5898153185844421 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/residual |
| keywords[1].score | 0.5692541003227234 |
| keywords[1].display_name | Residual |
| keywords[2].id | https://openalex.org/keywords/gradient-descent |
| keywords[2].score | 0.5027649402618408 |
| keywords[2].display_name | Gradient descent |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.49662333726882935 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.49340930581092834 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/coding |
| keywords[5].score | 0.48479121923446655 |
| keywords[5].display_name | Coding (social sciences) |
| keywords[6].id | https://openalex.org/keywords/nonlinear-system |
| keywords[6].score | 0.46343928575515747 |
| keywords[6].display_name | Nonlinear system |
| keywords[7].id | https://openalex.org/keywords/qubit |
| keywords[7].score | 0.4413785934448242 |
| keywords[7].display_name | Qubit |
| keywords[8].id | https://openalex.org/keywords/quantum |
| keywords[8].score | 0.3961062729358673 |
| keywords[8].display_name | Quantum |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.3593342900276184 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/control-theory |
| keywords[10].score | 0.356344074010849 |
| keywords[10].display_name | Control theory (sociology) |
| keywords[11].id | https://openalex.org/keywords/applied-mathematics |
| keywords[11].score | 0.3448706269264221 |
| keywords[11].display_name | Applied mathematics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.19136103987693787 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.13904786109924316 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.11371579766273499 |
| keywords[14].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-25786/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-25786/v1.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-25786/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100448882 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2616-5343 |
| authorships[0].author.display_name | Feng Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[0].affiliations[0].raw_affiliation_string | Sichuan University |
| authorships[0].institutions[0].id | https://openalex.org/I24185976 |
| authorships[0].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sichuan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Feng Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sichuan University |
| authorships[1].author.id | https://openalex.org/A5021760829 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4991-6610 |
| authorships[1].author.display_name | Yangyang Cheng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[1].affiliations[0].raw_affiliation_string | Sichuan University |
| authorships[1].institutions[0].id | https://openalex.org/I24185976 |
| authorships[1].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sichuan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang-Yang Cheng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sichuan University |
| authorships[2].author.id | https://openalex.org/A5010206131 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8286-8860 |
| authorships[2].author.display_name | Baoping Tang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[2].affiliations[0].raw_affiliation_string | Chongqing University |
| authorships[2].institutions[0].id | https://openalex.org/I158842170 |
| authorships[2].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chongqing University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bao-Ping Tang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Chongqing University |
| authorships[3].author.id | https://openalex.org/A5042734509 |
| authorships[3].author.orcid | https://orcid.org/0009-0006-1628-8004 |
| authorships[3].author.display_name | Xue‐Ming Zhou |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[3].affiliations[0].raw_affiliation_string | Chongqing University |
| authorships[3].institutions[0].id | https://openalex.org/I158842170 |
| authorships[3].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chongqing University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xue-Ming Zhou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Chongqing University |
| authorships[4].author.id | https://openalex.org/A5019303736 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Xiong Rui-ping |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[4].affiliations[0].raw_affiliation_string | Sichuan University |
| authorships[4].institutions[0].id | https://openalex.org/I24185976 |
| authorships[4].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Sichuan University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Rui-Ping Xiong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Sichuan University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-25786/v1.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Quantum Gene Chain Coding Bidirectional Neural Network for Residual Useful Life Prediction of Rotating Machinery |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10934 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9685999751091003 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Heat shock proteins research |
| related_works | https://openalex.org/W2560215812, https://openalex.org/W2949601986, https://openalex.org/W4382281260, https://openalex.org/W2788972299, https://openalex.org/W2521347458, https://openalex.org/W2498789492, https://openalex.org/W2729981612, https://openalex.org/W4233449973, https://openalex.org/W2925692864, https://openalex.org/W151988857 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-25786/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-25786/v1.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-25786/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-25786/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-25786/v1.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-25786/v1 |
| publication_date | 2020-05-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2463813940, https://openalex.org/W2763269460, https://openalex.org/W2507423952, https://openalex.org/W2473294140, https://openalex.org/W2022621390, https://openalex.org/W841461151, https://openalex.org/W2341207936, https://openalex.org/W2519348275, https://openalex.org/W2241744696, https://openalex.org/W2799972844, https://openalex.org/W2421684966, https://openalex.org/W2789263499, https://openalex.org/W2617137613, https://openalex.org/W2403557608, https://openalex.org/W2466134622, https://openalex.org/W2612741352, https://openalex.org/W2771980518, https://openalex.org/W2707074415, https://openalex.org/W2273520864, https://openalex.org/W2793529931, https://openalex.org/W6732956686, https://openalex.org/W1179436881, https://openalex.org/W2758002822, https://openalex.org/W2755418751, https://openalex.org/W2593044082, https://openalex.org/W2809559970, https://openalex.org/W2145823949, https://openalex.org/W2745149021, https://openalex.org/W3123692285, https://openalex.org/W2582157661, https://openalex.org/W2964072503 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 66, 223, 264 |
| abstract_inverted_index.In | 1, 62, 85 |
| abstract_inverted_index.On | 220 |
| abstract_inverted_index.RM | 81, 229 |
| abstract_inverted_index.as | 236, 238 |
| abstract_inverted_index.be | 15, 134, 242 |
| abstract_inverted_index.by | 33, 206 |
| abstract_inverted_index.in | 49, 82, 145, 173, 250 |
| abstract_inverted_index.is | 22, 75, 94, 166, 182, 230 |
| abstract_inverted_index.of | 10, 52, 58, 64, 80, 102, 130, 162, 202, 216, 248, 263, 271 |
| abstract_inverted_index.so | 17, 118 |
| abstract_inverted_index.to | 14, 40, 77, 96, 111, 147, 168, 193, 245 |
| abstract_inverted_index.RUL | 79, 225, 261 |
| abstract_inverted_index.The | 257 |
| abstract_inverted_index.and | 8, 30, 45, 100, 126, 153, 170, 184, 187, 232, 254 |
| abstract_inverted_index.are | 28, 198 |
| abstract_inverted_index.can | 133, 241 |
| abstract_inverted_index.due | 244 |
| abstract_inverted_index.for | 105, 211, 228, 260 |
| abstract_inverted_index.low | 42 |
| abstract_inverted_index.new | 224 |
| abstract_inverted_index.our | 86, 272 |
| abstract_inverted_index.the | 6, 26, 34, 50, 89, 98, 107, 112, 115, 123, 127, 131, 149, 156, 175, 185, 194, 203, 207, 212, 217, 246, 269 |
| abstract_inverted_index.cost | 48 |
| abstract_inverted_index.from | 114 |
| abstract_inverted_index.gene | 68, 158 |
| abstract_inverted_index.high | 46 |
| abstract_inverted_index.life | 55 |
| abstract_inverted_index.loss | 196 |
| abstract_inverted_index.pre- | 7, 99 |
| abstract_inverted_index.real | 179 |
| abstract_inverted_index.tend | 13 |
| abstract_inverted_index.that | 18, 119 |
| abstract_inverted_index.this | 83, 221 |
| abstract_inverted_index.thus | 136 |
| abstract_inverted_index.time | 11, 103, 205 |
| abstract_inverted_index.view | 63 |
| abstract_inverted_index.well | 237 |
| abstract_inverted_index.with | 139, 200 |
| abstract_inverted_index.(RM). | 61 |
| abstract_inverted_index.(RUL) | 56 |
| abstract_inverted_index.chain | 69, 159 |
| abstract_inverted_index.data, | 172 |
| abstract_inverted_index.input | 124 |
| abstract_inverted_index.leads | 39 |
| abstract_inverted_index.order | 146 |
| abstract_inverted_index.phase | 208 |
| abstract_inverted_index.qubit | 176, 189 |
| abstract_inverted_index.their | 41 |
| abstract_inverted_index.this, | 65 |
| abstract_inverted_index.those | 201 |
| abstract_inverted_index.which | 38, 174 |
| abstract_inverted_index.basis, | 222 |
| abstract_inverted_index.better | 140 |
| abstract_inverted_index.coding | 70, 160, 181 |
| abstract_inverted_index.cosine | 186 |
| abstract_inverted_index.global | 150 |
| abstract_inverted_index.higher | 120, 233 |
| abstract_inverted_index.layer, | 117 |
| abstract_inverted_index.mainly | 32 |
| abstract_inverted_index.matrix | 210 |
| abstract_inverted_index.memory | 21, 129 |
| abstract_inverted_index.method | 165, 227 |
| abstract_inverted_index.neural | 4, 72 |
| abstract_inverted_index.number | 180 |
| abstract_inverted_index.output | 116 |
| abstract_inverted_index.paper. | 84 |
| abstract_inverted_index.roller | 266 |
| abstract_inverted_index.series | 12, 104 |
| abstract_inverted_index.speed, | 155 |
| abstract_inverted_index.speed. | 256 |
| abstract_inverted_index.update | 171 |
| abstract_inverted_index.useful | 54 |
| abstract_inverted_index.weight | 108, 218 |
| abstract_inverted_index.QGCCBNN | 138, 249 |
| abstract_inverted_index.ability | 152, 253 |
| abstract_inverted_index.adopted | 183 |
| abstract_inverted_index.bearing | 267 |
| abstract_inverted_index.between | 122 |
| abstract_inverted_index.current | 204 |
| abstract_inverted_index.descent | 36, 164 |
| abstract_inverted_index.example | 259 |
| abstract_inverted_index.improve | 148 |
| abstract_inverted_index.instead | 161 |
| abstract_inverted_index.method, | 37 |
| abstract_inverted_index.method. | 274 |
| abstract_inverted_index.minimum | 195 |
| abstract_inverted_index.network | 73, 132 |
| abstract_inverted_index.overall | 20, 128 |
| abstract_inverted_index.predict | 78 |
| abstract_inverted_index.quantum | 67, 90, 157 |
| abstract_inverted_index.updated | 31 |
| abstract_inverted_index.weights | 27 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.QGCCBNN, | 88 |
| abstract_inverted_index.ability. | 143 |
| abstract_inverted_index.accuracy | 44, 235 |
| abstract_inverted_index.compared | 199 |
| abstract_inverted_index.designed | 95 |
| abstract_inverted_index.endowing | 137 |
| abstract_inverted_index.feedback | 113 |
| abstract_inverted_index.function | 197 |
| abstract_inverted_index.gradient | 35, 163 |
| abstract_inverted_index.obtained | 243 |
| abstract_inverted_index.parallel | 214 |
| abstract_inverted_index.proposed | 76, 87, 273 |
| abstract_inverted_index.residual | 53 |
| abstract_inverted_index.rotating | 59 |
| abstract_inverted_index.transmit | 169 |
| abstract_inverted_index.updating | 215 |
| abstract_inverted_index.(QGCCBNN) | 74 |
| abstract_inverted_index.Moreover, | 144 |
| abstract_inverted_index.according | 110 |
| abstract_inverted_index.amplitude | 178 |
| abstract_inverted_index.classical | 2 |
| abstract_inverted_index.desirable | 239 |
| abstract_inverted_index.establish | 97 |
| abstract_inverted_index.generally | 23 |
| abstract_inverted_index.long-term | 19 |
| abstract_inverted_index.machinery | 60 |
| abstract_inverted_index.mechanism | 93 |
| abstract_inverted_index.neglected | 16 |
| abstract_inverted_index.networks, | 5 |
| abstract_inverted_index.nonlinear | 141, 251 |
| abstract_inverted_index.proposed, | 231 |
| abstract_inverted_index.realized, | 135 |
| abstract_inverted_index.recurrent | 3 |
| abstract_inverted_index.selection | 209 |
| abstract_inverted_index.advantages | 247 |
| abstract_inverted_index.amplitudes | 191 |
| abstract_inverted_index.double-row | 265 |
| abstract_inverted_index.efficiency | 240 |
| abstract_inverted_index.meanwhile, | 25 |
| abstract_inverted_index.parameters | 109 |
| abstract_inverted_index.prediction | 43, 57, 226, 234, 262 |
| abstract_inverted_index.sinusoidal | 188 |
| abstract_inverted_index.application | 51 |
| abstract_inverted_index.computation | 47 |
| abstract_inverted_index.consistency | 121 |
| abstract_inverted_index.constructed | 167 |
| abstract_inverted_index.convergence | 154, 255 |
| abstract_inverted_index.directional | 213 |
| abstract_inverted_index.information | 125 |
| abstract_inverted_index.parameters. | 219 |
| abstract_inverted_index.probability | 177, 190 |
| abstract_inverted_index.readjusting | 106 |
| abstract_inverted_index.transferred | 29 |
| abstract_inverted_index.demonstrates | 268 |
| abstract_inverted_index.experimental | 258 |
| abstract_inverted_index.optimization | 151 |
| abstract_inverted_index.transmission | 92 |
| abstract_inverted_index.approximation | 142, 252 |
| abstract_inverted_index.bidirectional | 71, 91 |
| abstract_inverted_index.corresponding | 192 |
| abstract_inverted_index.effectiveness | 270 |
| abstract_inverted_index.inaccessible; | 24 |
| abstract_inverted_index.post-relationships | 9, 101 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.48515179 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |