Queue length estimation at signalized intersections based on magnetic sensors by different layout strategies Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1016/j.trpro.2017.05.212
This paper modeled and analyzed the queue length estimation mechanisms by different layout strategies. According to the lane allocations of intersections, several feasible layout strategies of magnetic sensors are proposed. Furthermore, a layout strategy with one single magnetic sensor is proposed to estimate the queue length. Specifically, three single-sensor based estimation methods were presented, which are: Tail Interval-based Method (TIM), Passing Time-based Method (PTM), and Tail interval and Passing time-based Method (T-PM). The optimal layout strategy and the corresponding algorithm of queue length estimation were presented based on filed data. The results indicated that T-PM had a better performance in terms of accuracy and robustness. The layout strategy with a single magnetic sensor was verified to be the most economical strategy to estimate the queue length of the immediate past signal cycle. The experimental results also showed that the proposed single-sensor based method is simple and economical, and will be suitable for large-scale deployment and application.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.trpro.2017.05.212
- OA Status
- diamond
- Cited By
- 19
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2621987828
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2621987828Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.trpro.2017.05.212Digital Object Identifier
- Title
-
Queue length estimation at signalized intersections based on magnetic sensors by different layout strategiesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
Haijian Li, Na Chen, Lingqiao Qin, Limin Jia, Jian RongList of authors in order
- Landing page
-
https://doi.org/10.1016/j.trpro.2017.05.212Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.trpro.2017.05.212Direct OA link when available
- Concepts
-
Queue, Robustness (evolution), Interval (graph theory), Computer science, Real-time computing, Software deployment, Algorithm, Mathematical optimization, Simulation, Mathematics, Computer network, Gene, Chemistry, Combinatorics, Biochemistry, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 1, 2022: 2, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2621987828 |
|---|---|
| doi | https://doi.org/10.1016/j.trpro.2017.05.212 |
| ids.doi | https://doi.org/10.1016/j.trpro.2017.05.212 |
| ids.mag | 2621987828 |
| ids.openalex | https://openalex.org/W2621987828 |
| fwci | 1.7984334 |
| type | article |
| title | Queue length estimation at signalized intersections based on magnetic sensors by different layout strategies |
| biblio.issue | |
| biblio.volume | 25 |
| biblio.last_page | 1644 |
| biblio.first_page | 1626 |
| topics[0].id | https://openalex.org/T10524 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Traffic control and management |
| topics[1].id | https://openalex.org/T11099 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Autonomous Vehicle Technology and Safety |
| topics[2].id | https://openalex.org/T11344 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9980999827384949 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Traffic Prediction and Management Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C160403385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8525052666664124 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q220543 |
| concepts[0].display_name | Queue |
| concepts[1].id | https://openalex.org/C63479239 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7524228096008301 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[1].display_name | Robustness (evolution) |
| concepts[2].id | https://openalex.org/C2778067643 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5890244245529175 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[2].display_name | Interval (graph theory) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5629703998565674 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C79403827 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5150368213653564 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[4].display_name | Real-time computing |
| concepts[5].id | https://openalex.org/C105339364 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4356095790863037 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2297740 |
| concepts[5].display_name | Software deployment |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4019257426261902 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C126255220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3809811472892761 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[7].display_name | Mathematical optimization |
| concepts[8].id | https://openalex.org/C44154836 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32169678807258606 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[8].display_name | Simulation |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15470486879348755 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07953959703445435 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C114614502 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[13].display_name | Combinatorics |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/queue |
| keywords[0].score | 0.8525052666664124 |
| keywords[0].display_name | Queue |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.7524228096008301 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/interval |
| keywords[2].score | 0.5890244245529175 |
| keywords[2].display_name | Interval (graph theory) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5629703998565674 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/real-time-computing |
| keywords[4].score | 0.5150368213653564 |
| keywords[4].display_name | Real-time computing |
| keywords[5].id | https://openalex.org/keywords/software-deployment |
| keywords[5].score | 0.4356095790863037 |
| keywords[5].display_name | Software deployment |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.4019257426261902 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[7].score | 0.3809811472892761 |
| keywords[7].display_name | Mathematical optimization |
| keywords[8].id | https://openalex.org/keywords/simulation |
| keywords[8].score | 0.32169678807258606 |
| keywords[8].display_name | Simulation |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.15470486879348755 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/computer-network |
| keywords[10].score | 0.07953959703445435 |
| keywords[10].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.1016/j.trpro.2017.05.212 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764743394 |
| locations[0].source.issn | 2352-1457, 2352-1465 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2352-1457 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Transportation research procedia |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Transportation Research Procedia |
| locations[0].landing_page_url | https://doi.org/10.1016/j.trpro.2017.05.212 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5090963178 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4912-9529 |
| authorships[0].author.display_name | Haijian Li |
| authorships[0].countries | CN, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I37796252 |
| authorships[0].affiliations[1].raw_affiliation_string | Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China |
| authorships[0].institutions[0].id | https://openalex.org/I37796252 |
| authorships[0].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I135310074 |
| authorships[0].institutions[1].ror | https://ror.org/01y2jtd41 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I135310074 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | University of Wisconsin–Madison |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haijian Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China, Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA |
| authorships[1].author.id | https://openalex.org/A5071313151 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Na Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China |
| authorships[1].institutions[0].id | https://openalex.org/I21193070 |
| authorships[1].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Na Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China |
| authorships[2].author.id | https://openalex.org/A5089043867 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2861-4090 |
| authorships[2].author.display_name | Lingqiao Qin |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA |
| authorships[2].institutions[0].id | https://openalex.org/I135310074 |
| authorships[2].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lingqiao Qin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA |
| authorships[3].author.id | https://openalex.org/A5108050300 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1561-0405 |
| authorships[3].author.display_name | Limin Jia |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China |
| authorships[3].institutions[0].id | https://openalex.org/I21193070 |
| authorships[3].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Limin Jia |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China |
| authorships[4].author.id | https://openalex.org/A5100725488 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3315-6429 |
| authorships[4].author.display_name | Jian Rong |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[4].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China |
| authorships[4].institutions[0].id | https://openalex.org/I37796252 |
| authorships[4].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing University of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jian Rong |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.trpro.2017.05.212 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Queue length estimation at signalized intersections based on magnetic sensors by different layout strategies |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10524 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Traffic control and management |
| related_works | https://openalex.org/W2770234245, https://openalex.org/W96612179, https://openalex.org/W4229499248, https://openalex.org/W2566006169, https://openalex.org/W1567818861, https://openalex.org/W2987774938, https://openalex.org/W4256492088, https://openalex.org/W632915154, https://openalex.org/W2055733372, https://openalex.org/W3022067003 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 2 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 5 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.trpro.2017.05.212 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764743394 |
| best_oa_location.source.issn | 2352-1457, 2352-1465 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2352-1457 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Transportation research procedia |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Transportation Research Procedia |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.trpro.2017.05.212 |
| primary_location.id | doi:10.1016/j.trpro.2017.05.212 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764743394 |
| primary_location.source.issn | 2352-1457, 2352-1465 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2352-1457 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Transportation research procedia |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Transportation Research Procedia |
| primary_location.landing_page_url | https://doi.org/10.1016/j.trpro.2017.05.212 |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2091206553, https://openalex.org/W2098207833, https://openalex.org/W1989573631, https://openalex.org/W1996594438, https://openalex.org/W1992097825, https://openalex.org/W2389971682, https://openalex.org/W2070370925, https://openalex.org/W2091491470, https://openalex.org/W2152199613, https://openalex.org/W2157428127, https://openalex.org/W2046902737, https://openalex.org/W2089470706, https://openalex.org/W2054087864, https://openalex.org/W2156271471, https://openalex.org/W2013385032, https://openalex.org/W2002530253, https://openalex.org/W2121852672, https://openalex.org/W2021805331, https://openalex.org/W2023986939, https://openalex.org/W2325301913, https://openalex.org/W2003730896 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 31, 96, 109 |
| abstract_inverted_index.be | 116, 149 |
| abstract_inverted_index.by | 10 |
| abstract_inverted_index.in | 99 |
| abstract_inverted_index.is | 39, 143 |
| abstract_inverted_index.of | 19, 25, 80, 101, 126 |
| abstract_inverted_index.on | 87 |
| abstract_inverted_index.to | 15, 41, 115, 121 |
| abstract_inverted_index.The | 72, 90, 105, 132 |
| abstract_inverted_index.and | 3, 64, 67, 76, 103, 145, 147, 154 |
| abstract_inverted_index.are | 28 |
| abstract_inverted_index.for | 151 |
| abstract_inverted_index.had | 95 |
| abstract_inverted_index.one | 35 |
| abstract_inverted_index.the | 5, 16, 43, 77, 117, 123, 127, 138 |
| abstract_inverted_index.was | 113 |
| abstract_inverted_index.T-PM | 94 |
| abstract_inverted_index.Tail | 56, 65 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 135 |
| abstract_inverted_index.are: | 55 |
| abstract_inverted_index.lane | 17 |
| abstract_inverted_index.most | 118 |
| abstract_inverted_index.past | 129 |
| abstract_inverted_index.that | 93, 137 |
| abstract_inverted_index.were | 52, 84 |
| abstract_inverted_index.will | 148 |
| abstract_inverted_index.with | 34, 108 |
| abstract_inverted_index.based | 49, 86, 141 |
| abstract_inverted_index.data. | 89 |
| abstract_inverted_index.filed | 88 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.queue | 6, 44, 81, 124 |
| abstract_inverted_index.terms | 100 |
| abstract_inverted_index.three | 47 |
| abstract_inverted_index.which | 54 |
| abstract_inverted_index.(PTM), | 63 |
| abstract_inverted_index.(TIM), | 59 |
| abstract_inverted_index.Method | 58, 62, 70 |
| abstract_inverted_index.better | 97 |
| abstract_inverted_index.cycle. | 131 |
| abstract_inverted_index.layout | 12, 23, 32, 74, 106 |
| abstract_inverted_index.length | 7, 82, 125 |
| abstract_inverted_index.method | 142 |
| abstract_inverted_index.sensor | 38, 112 |
| abstract_inverted_index.showed | 136 |
| abstract_inverted_index.signal | 130 |
| abstract_inverted_index.simple | 144 |
| abstract_inverted_index.single | 36, 110 |
| abstract_inverted_index.(T-PM). | 71 |
| abstract_inverted_index.Passing | 60, 68 |
| abstract_inverted_index.length. | 45 |
| abstract_inverted_index.methods | 51 |
| abstract_inverted_index.modeled | 2 |
| abstract_inverted_index.optimal | 73 |
| abstract_inverted_index.results | 91, 134 |
| abstract_inverted_index.sensors | 27 |
| abstract_inverted_index.several | 21 |
| abstract_inverted_index.accuracy | 102 |
| abstract_inverted_index.analyzed | 4 |
| abstract_inverted_index.estimate | 42, 122 |
| abstract_inverted_index.feasible | 22 |
| abstract_inverted_index.interval | 66 |
| abstract_inverted_index.magnetic | 26, 37, 111 |
| abstract_inverted_index.proposed | 40, 139 |
| abstract_inverted_index.strategy | 33, 75, 107, 120 |
| abstract_inverted_index.suitable | 150 |
| abstract_inverted_index.verified | 114 |
| abstract_inverted_index.According | 14 |
| abstract_inverted_index.algorithm | 79 |
| abstract_inverted_index.different | 11 |
| abstract_inverted_index.immediate | 128 |
| abstract_inverted_index.indicated | 92 |
| abstract_inverted_index.presented | 85 |
| abstract_inverted_index.proposed. | 29 |
| abstract_inverted_index.Time-based | 61 |
| abstract_inverted_index.deployment | 153 |
| abstract_inverted_index.economical | 119 |
| abstract_inverted_index.estimation | 8, 50, 83 |
| abstract_inverted_index.mechanisms | 9 |
| abstract_inverted_index.presented, | 53 |
| abstract_inverted_index.strategies | 24 |
| abstract_inverted_index.time-based | 69 |
| abstract_inverted_index.allocations | 18 |
| abstract_inverted_index.economical, | 146 |
| abstract_inverted_index.large-scale | 152 |
| abstract_inverted_index.performance | 98 |
| abstract_inverted_index.robustness. | 104 |
| abstract_inverted_index.strategies. | 13 |
| abstract_inverted_index.Furthermore, | 30 |
| abstract_inverted_index.application. | 155 |
| abstract_inverted_index.experimental | 133 |
| abstract_inverted_index.Specifically, | 46 |
| abstract_inverted_index.corresponding | 78 |
| abstract_inverted_index.single-sensor | 48, 140 |
| abstract_inverted_index.Interval-based | 57 |
| abstract_inverted_index.intersections, | 20 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5100725488 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I37796252 |
| citation_normalized_percentile.value | 0.85840007 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |