QuiZSF: An efficient data-model interaction framework for zero-shot time-series forecasting Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2508.06915
Time series forecasting has become increasingly important to empower diverse applications with streaming data. Zero-shot time-series forecasting (ZSF), particularly valuable in data-scarce scenarios, such as domain transfer or forecasting under extreme conditions, is difficult for traditional models to deal with. While time series pre-trained models (TSPMs) have demonstrated strong performance in ZSF, they often lack mechanisms to dynamically incorporate external knowledge. Fortunately, emerging retrieval-augmented generation (RAG) offers a promising path for injecting such knowledge on demand, yet they are rarely integrated with TSPMs. To leverage the strengths of both worlds, we introduce RAG into TSPMs to enhance zero-shot time series forecasting. In this paper, we propose QuiZSF (Quick Zero-Shot Time Series Forecaster), a lightweight and modular framework that couples efficient retrieval with representation learning and model adaptation for ZSF. Specifically, we construct a hierarchical tree-structured ChronoRAG Base (CRB) for scalable time-series storage and domain-aware retrieval, introduce a Multi-grained Series Interaction Learner (MSIL) to extract fine- and coarse-grained relational features, and develop a dual-branch Model Cooperation Coherer (MCC) that aligns retrieved knowledge with two kinds of TSPMs: Non-LLM based and LLM based. Compared with contemporary baselines, QuiZSF, with Non-LLM based and LLM based TSPMs as base model, respectively, ranks Top1 in 75% and 87.5% of prediction settings, while maintaining high efficiency in memory and inference time.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.06915
- https://arxiv.org/pdf/2508.06915
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416178479
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416178479Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.06915Digital Object Identifier
- Title
-
QuiZSF: An efficient data-model interaction framework for zero-shot time-series forecastingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-09Full publication date if available
- Authors
-
Qihe Huang, Bin‐Wu Wang, Kuo Yang, Huan Li, Yan WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.06915Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.06915Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.06915Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416178479 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.06915 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.06915 |
| ids.openalex | https://openalex.org/W4416178479 |
| fwci | |
| type | preprint |
| title | QuiZSF: An efficient data-model interaction framework for zero-shot time-series forecasting |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.06915 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.06915 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.06915 |
| locations[1].id | doi:10.48550/arxiv.2508.06915 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.06915 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5063413910 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8960-6583 |
| authorships[0].author.display_name | Qihe Huang |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Huang, Qihe |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054585097 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Bin‐Wu Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Binwu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100673157 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kuo Yang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yang, Kuo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100622357 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7081-3742 |
| authorships[3].author.display_name | Huan Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Huan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100322712 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5344-1884 |
| authorships[4].author.display_name | Yan Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Yang |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.06915 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | QuiZSF: An efficient data-model interaction framework for zero-shot time-series forecasting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T07:06:41.230415 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.06915 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.06915 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.06915 |
| primary_location.id | pmh:oai:arXiv.org:2508.06915 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.06915 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.06915 |
| publication_date | 2025-08-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 67, 112, 132, 146, 161 |
| abstract_inverted_index.In | 101 |
| abstract_inverted_index.To | 83 |
| abstract_inverted_index.as | 24, 193 |
| abstract_inverted_index.in | 20, 50, 199, 210 |
| abstract_inverted_index.is | 32 |
| abstract_inverted_index.of | 87, 174, 203 |
| abstract_inverted_index.on | 74 |
| abstract_inverted_index.or | 27 |
| abstract_inverted_index.to | 7, 37, 56, 95, 152 |
| abstract_inverted_index.we | 90, 104, 130 |
| abstract_inverted_index.75% | 200 |
| abstract_inverted_index.LLM | 179, 190 |
| abstract_inverted_index.RAG | 92 |
| abstract_inverted_index.and | 114, 124, 142, 155, 159, 178, 189, 201, 212 |
| abstract_inverted_index.are | 78 |
| abstract_inverted_index.for | 34, 70, 127, 138 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.the | 85 |
| abstract_inverted_index.two | 172 |
| abstract_inverted_index.yet | 76 |
| abstract_inverted_index.Base | 136 |
| abstract_inverted_index.Time | 0, 109 |
| abstract_inverted_index.Top1 | 198 |
| abstract_inverted_index.ZSF, | 51 |
| abstract_inverted_index.ZSF. | 128 |
| abstract_inverted_index.base | 194 |
| abstract_inverted_index.both | 88 |
| abstract_inverted_index.deal | 38 |
| abstract_inverted_index.have | 46 |
| abstract_inverted_index.high | 208 |
| abstract_inverted_index.into | 93 |
| abstract_inverted_index.lack | 54 |
| abstract_inverted_index.path | 69 |
| abstract_inverted_index.such | 23, 72 |
| abstract_inverted_index.that | 117, 167 |
| abstract_inverted_index.they | 52, 77 |
| abstract_inverted_index.this | 102 |
| abstract_inverted_index.time | 41, 98 |
| abstract_inverted_index.with | 11, 81, 121, 171, 182, 186 |
| abstract_inverted_index.(CRB) | 137 |
| abstract_inverted_index.(MCC) | 166 |
| abstract_inverted_index.(RAG) | 65 |
| abstract_inverted_index.87.5% | 202 |
| abstract_inverted_index.Model | 163 |
| abstract_inverted_index.TSPMs | 94, 192 |
| abstract_inverted_index.While | 40 |
| abstract_inverted_index.based | 177, 188, 191 |
| abstract_inverted_index.data. | 13 |
| abstract_inverted_index.fine- | 154 |
| abstract_inverted_index.kinds | 173 |
| abstract_inverted_index.model | 125 |
| abstract_inverted_index.often | 53 |
| abstract_inverted_index.ranks | 197 |
| abstract_inverted_index.time. | 214 |
| abstract_inverted_index.under | 29 |
| abstract_inverted_index.while | 206 |
| abstract_inverted_index.with. | 39 |
| abstract_inverted_index.(MSIL) | 151 |
| abstract_inverted_index.(Quick | 107 |
| abstract_inverted_index.(ZSF), | 17 |
| abstract_inverted_index.QuiZSF | 106 |
| abstract_inverted_index.Series | 110, 148 |
| abstract_inverted_index.TSPMs. | 82 |
| abstract_inverted_index.TSPMs: | 175 |
| abstract_inverted_index.aligns | 168 |
| abstract_inverted_index.based. | 180 |
| abstract_inverted_index.become | 4 |
| abstract_inverted_index.domain | 25 |
| abstract_inverted_index.memory | 211 |
| abstract_inverted_index.model, | 195 |
| abstract_inverted_index.models | 36, 44 |
| abstract_inverted_index.offers | 66 |
| abstract_inverted_index.paper, | 103 |
| abstract_inverted_index.rarely | 79 |
| abstract_inverted_index.series | 1, 42, 99 |
| abstract_inverted_index.strong | 48 |
| abstract_inverted_index.(TSPMs) | 45 |
| abstract_inverted_index.Coherer | 165 |
| abstract_inverted_index.Learner | 150 |
| abstract_inverted_index.Non-LLM | 176, 187 |
| abstract_inverted_index.QuiZSF, | 185 |
| abstract_inverted_index.couples | 118 |
| abstract_inverted_index.demand, | 75 |
| abstract_inverted_index.develop | 160 |
| abstract_inverted_index.diverse | 9 |
| abstract_inverted_index.empower | 8 |
| abstract_inverted_index.enhance | 96 |
| abstract_inverted_index.extract | 153 |
| abstract_inverted_index.extreme | 30 |
| abstract_inverted_index.modular | 115 |
| abstract_inverted_index.propose | 105 |
| abstract_inverted_index.storage | 141 |
| abstract_inverted_index.worlds, | 89 |
| abstract_inverted_index.Compared | 181 |
| abstract_inverted_index.emerging | 62 |
| abstract_inverted_index.external | 59 |
| abstract_inverted_index.learning | 123 |
| abstract_inverted_index.leverage | 84 |
| abstract_inverted_index.scalable | 139 |
| abstract_inverted_index.transfer | 26 |
| abstract_inverted_index.valuable | 19 |
| abstract_inverted_index.ChronoRAG | 135 |
| abstract_inverted_index.Zero-Shot | 108 |
| abstract_inverted_index.Zero-shot | 14 |
| abstract_inverted_index.construct | 131 |
| abstract_inverted_index.difficult | 33 |
| abstract_inverted_index.efficient | 119 |
| abstract_inverted_index.features, | 158 |
| abstract_inverted_index.framework | 116 |
| abstract_inverted_index.important | 6 |
| abstract_inverted_index.inference | 213 |
| abstract_inverted_index.injecting | 71 |
| abstract_inverted_index.introduce | 91, 145 |
| abstract_inverted_index.knowledge | 73, 170 |
| abstract_inverted_index.promising | 68 |
| abstract_inverted_index.retrieval | 120 |
| abstract_inverted_index.retrieved | 169 |
| abstract_inverted_index.settings, | 205 |
| abstract_inverted_index.streaming | 12 |
| abstract_inverted_index.strengths | 86 |
| abstract_inverted_index.zero-shot | 97 |
| abstract_inverted_index.adaptation | 126 |
| abstract_inverted_index.baselines, | 184 |
| abstract_inverted_index.efficiency | 209 |
| abstract_inverted_index.generation | 64 |
| abstract_inverted_index.integrated | 80 |
| abstract_inverted_index.knowledge. | 60 |
| abstract_inverted_index.mechanisms | 55 |
| abstract_inverted_index.prediction | 204 |
| abstract_inverted_index.relational | 157 |
| abstract_inverted_index.retrieval, | 144 |
| abstract_inverted_index.scenarios, | 22 |
| abstract_inverted_index.Cooperation | 164 |
| abstract_inverted_index.Interaction | 149 |
| abstract_inverted_index.conditions, | 31 |
| abstract_inverted_index.data-scarce | 21 |
| abstract_inverted_index.dual-branch | 162 |
| abstract_inverted_index.dynamically | 57 |
| abstract_inverted_index.forecasting | 2, 16, 28 |
| abstract_inverted_index.incorporate | 58 |
| abstract_inverted_index.lightweight | 113 |
| abstract_inverted_index.maintaining | 207 |
| abstract_inverted_index.performance | 49 |
| abstract_inverted_index.pre-trained | 43 |
| abstract_inverted_index.time-series | 15, 140 |
| abstract_inverted_index.traditional | 35 |
| abstract_inverted_index.Forecaster), | 111 |
| abstract_inverted_index.Fortunately, | 61 |
| abstract_inverted_index.applications | 10 |
| abstract_inverted_index.contemporary | 183 |
| abstract_inverted_index.demonstrated | 47 |
| abstract_inverted_index.domain-aware | 143 |
| abstract_inverted_index.forecasting. | 100 |
| abstract_inverted_index.hierarchical | 133 |
| abstract_inverted_index.increasingly | 5 |
| abstract_inverted_index.particularly | 18 |
| abstract_inverted_index.Multi-grained | 147 |
| abstract_inverted_index.Specifically, | 129 |
| abstract_inverted_index.respectively, | 196 |
| abstract_inverted_index.coarse-grained | 156 |
| abstract_inverted_index.representation | 122 |
| abstract_inverted_index.tree-structured | 134 |
| abstract_inverted_index.retrieval-augmented | 63 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |