R$$^{2}$$S100K: Road-Region Segmentation Dataset for Semi-supervised Autonomous Driving in the Wild Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s11263-024-02207-3
Semantic understanding of roadways is a key enabling factor for safe autonomous driving. However, existing autonomous driving datasets provide well-structured urban roads while ignoring unstructured roadways containing distress, potholes, water puddles, and various kinds of road patches i.e., earthen, gravel etc. To this end, we introduce Road Region Segmentation dataset (R 2 S100K)—a large-scale dataset and benchmark for training and evaluation of road segmentation in aforementioned challenging unstructured roadways. R 2 S100K comprises 100K images extracted from a large and diverse set of video sequences covering more than 1000 km of roadways. Out of these 100K privacy respecting images, 14,000 images have fine pixel-labeling of road regions, with 86,000 unlabeled images that can be leveraged through semi-supervised learning methods. Alongside, we present an Efficient Data Sampling based self-training framework to improve learning by leveraging unlabeled data. Our experimental results demonstrate that the proposed method significantly improves learning methods in generalizability and reduces the labeling cost for semantic segmentation tasks. Our benchmark will be publicly available to facilitate future research at https://r2s100k.github.io/ .
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s11263-024-02207-3
- OA Status
- hybrid
- Cited By
- 2
- References
- 65
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401804758
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401804758Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s11263-024-02207-3Digital Object Identifier
- Title
-
R$$^{2}$$S100K: Road-Region Segmentation Dataset for Semi-supervised Autonomous Driving in the WildWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-23Full publication date if available
- Authors
-
Muhammad Atif Butt, Hassan Ali, Adnan Qayyum, Waqas Sultani, Ala Al‐Fuqaha, Junaid QadirList of authors in order
- Landing page
-
https://doi.org/10.1007/s11263-024-02207-3Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1007/s11263-024-02207-3Direct OA link when available
- Concepts
-
Artificial intelligence, Segmentation, Pattern recognition (psychology), Computer science, Computer vision, Image segmentationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
65Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401804758 |
|---|---|
| doi | https://doi.org/10.1007/s11263-024-02207-3 |
| ids.doi | https://doi.org/10.1007/s11263-024-02207-3 |
| ids.openalex | https://openalex.org/W4401804758 |
| fwci | 1.24555854 |
| type | article |
| title | R$$^{2}$$S100K: Road-Region Segmentation Dataset for Semi-supervised Autonomous Driving in the Wild |
| awards[0].id | https://openalex.org/G6546757642 |
| awards[0].funder_id | https://openalex.org/F4320332753 |
| awards[0].display_name | |
| awards[0].funder_award_id | 13S-0206-200273 |
| awards[0].funder_display_name | Qatar National Research Fund |
| biblio.issue | 2 |
| biblio.volume | 133 |
| biblio.last_page | 928 |
| biblio.first_page | 910 |
| topics[0].id | https://openalex.org/T13282 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Automated Road and Building Extraction |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11164 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.996999979019165 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Remote Sensing and LiDAR Applications |
| funders[0].id | https://openalex.org/F4320332753 |
| funders[0].ror | https://ror.org/01svaqq28 |
| funders[0].display_name | Qatar National Research Fund |
| is_xpac | False |
| apc_list.value | 2890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3690 |
| apc_paid.value | 2890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3690 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6923660039901733 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6679664850234985 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5801429748535156 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5343344211578369 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4378530979156494 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C124504099 |
| concepts[5].level | 3 |
| concepts[5].score | 0.41935741901397705 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[5].display_name | Image segmentation |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6923660039901733 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6679664850234985 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.5801429748535156 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5343344211578369 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.4378530979156494 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/image-segmentation |
| keywords[5].score | 0.41935741901397705 |
| keywords[5].display_name | Image segmentation |
| language | en |
| locations[0].id | doi:10.1007/s11263-024-02207-3 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S25538012 |
| locations[0].source.issn | 0920-5691, 1573-1405 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0920-5691 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Computer Vision |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Computer Vision |
| locations[0].landing_page_url | https://doi.org/10.1007/s11263-024-02207-3 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5064713301 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4799-6488 |
| authorships[0].author.display_name | Muhammad Atif Butt |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I123044942 |
| authorships[0].affiliations[0].raw_affiliation_string | Computer Vision Center (CVC), Universitat Autònoma de Barcelona Bellaterra, Cerdanyola del Vallès, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I123044942 |
| authorships[0].institutions[0].ror | https://ror.org/052g8jq94 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I123044942 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universitat Autònoma de Barcelona |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muhammad Atif Butt |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computer Vision Center (CVC), Universitat Autònoma de Barcelona Bellaterra, Cerdanyola del Vallès, Spain |
| authorships[1].author.id | https://openalex.org/A5100701243 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1701-0390 |
| authorships[1].author.display_name | Hassan Ali |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1323252656, https://openalex.org/I172780181 |
| authorships[1].affiliations[0].raw_affiliation_string | Information Technology University of the Punjab, Lahore, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I1323252656 |
| authorships[1].institutions[0].ror | https://ror.org/00ngv8j44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1323252656 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | Information Technology University |
| authorships[1].institutions[1].id | https://openalex.org/I172780181 |
| authorships[1].institutions[1].ror | https://ror.org/011maz450 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I172780181 |
| authorships[1].institutions[1].country_code | PK |
| authorships[1].institutions[1].display_name | University of the Punjab |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hassan Ali |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Information Technology University of the Punjab, Lahore, Pakistan |
| authorships[2].author.id | https://openalex.org/A5024012801 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6732-7601 |
| authorships[2].author.display_name | Adnan Qayyum |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1323252656, https://openalex.org/I172780181 |
| authorships[2].affiliations[0].raw_affiliation_string | Information Technology University of the Punjab, Lahore, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I1323252656 |
| authorships[2].institutions[0].ror | https://ror.org/00ngv8j44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1323252656 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | Information Technology University |
| authorships[2].institutions[1].id | https://openalex.org/I172780181 |
| authorships[2].institutions[1].ror | https://ror.org/011maz450 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I172780181 |
| authorships[2].institutions[1].country_code | PK |
| authorships[2].institutions[1].display_name | University of the Punjab |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Adnan Qayyum |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Information Technology University of the Punjab, Lahore, Pakistan |
| authorships[3].author.id | https://openalex.org/A5082613558 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9322-0728 |
| authorships[3].author.display_name | Waqas Sultani |
| authorships[3].countries | PK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1323252656, https://openalex.org/I172780181 |
| authorships[3].affiliations[0].raw_affiliation_string | Information Technology University of the Punjab, Lahore, Pakistan |
| authorships[3].institutions[0].id | https://openalex.org/I1323252656 |
| authorships[3].institutions[0].ror | https://ror.org/00ngv8j44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I1323252656 |
| authorships[3].institutions[0].country_code | PK |
| authorships[3].institutions[0].display_name | Information Technology University |
| authorships[3].institutions[1].id | https://openalex.org/I172780181 |
| authorships[3].institutions[1].ror | https://ror.org/011maz450 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I172780181 |
| authorships[3].institutions[1].country_code | PK |
| authorships[3].institutions[1].display_name | University of the Punjab |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Waqas Sultani |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Information Technology University of the Punjab, Lahore, Pakistan |
| authorships[4].author.id | https://openalex.org/A5008695053 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0903-1204 |
| authorships[4].author.display_name | Ala Al‐Fuqaha |
| authorships[4].countries | QA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210144839 |
| authorships[4].affiliations[0].raw_affiliation_string | Information and Computing Technology (ICT) Division, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar |
| authorships[4].institutions[0].id | https://openalex.org/I4210144839 |
| authorships[4].institutions[0].ror | https://ror.org/03eyq4y97 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210144839 |
| authorships[4].institutions[0].country_code | QA |
| authorships[4].institutions[0].display_name | Hamad bin Khalifa University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ala Al-Fuqaha |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Information and Computing Technology (ICT) Division, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar |
| authorships[5].author.id | https://openalex.org/A5037574053 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9466-2475 |
| authorships[5].author.display_name | Junaid Qadir |
| authorships[5].countries | QA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I60342839 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, College of Engineering, Qatar University, Doha, Qatar |
| authorships[5].institutions[0].id | https://openalex.org/I60342839 |
| authorships[5].institutions[0].ror | https://ror.org/00yhnba62 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I60342839 |
| authorships[5].institutions[0].country_code | QA |
| authorships[5].institutions[0].display_name | Qatar University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Junaid Qadir |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Computer Science and Engineering, College of Engineering, Qatar University, Doha, Qatar |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1007/s11263-024-02207-3 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | R$$^{2}$$S100K: Road-Region Segmentation Dataset for Semi-supervised Autonomous Driving in the Wild |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13282 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Automated Road and Building Extraction |
| related_works | https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2772917594, https://openalex.org/W2775347418, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s11263-024-02207-3 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S25538012 |
| best_oa_location.source.issn | 0920-5691, 1573-1405 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0920-5691 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Computer Vision |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Computer Vision |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s11263-024-02207-3 |
| primary_location.id | doi:10.1007/s11263-024-02207-3 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S25538012 |
| primary_location.source.issn | 0920-5691, 1573-1405 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0920-5691 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Computer Vision |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Computer Vision |
| primary_location.landing_page_url | https://doi.org/10.1007/s11263-024-02207-3 |
| publication_date | 2024-08-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2987252287, https://openalex.org/W2963881378, https://openalex.org/W2171943915, https://openalex.org/W2768184749, https://openalex.org/W4212925866, https://openalex.org/W3035574168, https://openalex.org/W2735039185, https://openalex.org/W2412782625, https://openalex.org/W2964309882, https://openalex.org/W3171581326, https://openalex.org/W3180659539, https://openalex.org/W2340897893, https://openalex.org/W2108598243, https://openalex.org/W2107775979, https://openalex.org/W2150066425, https://openalex.org/W4296544717, https://openalex.org/W2954054736, https://openalex.org/W2982083293, https://openalex.org/W2892614179, https://openalex.org/W3206164009, https://openalex.org/W4390874575, https://openalex.org/W1861492603, https://openalex.org/W2565639579, https://openalex.org/W3034870355, https://openalex.org/W1903029394, https://openalex.org/W2601686579, https://openalex.org/W2995808743, https://openalex.org/W2528342806, https://openalex.org/W2781228439, https://openalex.org/W1745334888, https://openalex.org/W3035680157, https://openalex.org/W4205098306, https://openalex.org/W2911583416, https://openalex.org/W2762439315, https://openalex.org/W1901129140, https://openalex.org/W4382449692, https://openalex.org/W2892220819, https://openalex.org/W2778764040, https://openalex.org/W3035172746, https://openalex.org/W2901870313, https://openalex.org/W3203732962, https://openalex.org/W4386076222, https://openalex.org/W4221161877, https://openalex.org/W2798376494, https://openalex.org/W3003922739, https://openalex.org/W3209102426, https://openalex.org/W3170544306, https://openalex.org/W6608489313, https://openalex.org/W2886934227, https://openalex.org/W3035564946, https://openalex.org/W3112561780, https://openalex.org/W2894903065, https://openalex.org/W2594507094, https://openalex.org/W4210643638, https://openalex.org/W2560023338, https://openalex.org/W2964217532, https://openalex.org/W4386066400, https://openalex.org/W2964254867, https://openalex.org/W2895281799, https://openalex.org/W2985406498, https://openalex.org/W2802922942, https://openalex.org/W4212774754, https://openalex.org/W4246252528, https://openalex.org/W4230498685, https://openalex.org/W3105636206 |
| referenced_works_count | 65 |
| abstract_inverted_index.. | 172 |
| abstract_inverted_index.2 | 52, 71 |
| abstract_inverted_index.R | 70 |
| abstract_inverted_index.a | 6, 78 |
| abstract_inverted_index.(R | 51 |
| abstract_inverted_index.To | 42 |
| abstract_inverted_index.an | 123 |
| abstract_inverted_index.at | 170 |
| abstract_inverted_index.be | 114, 163 |
| abstract_inverted_index.by | 133 |
| abstract_inverted_index.in | 65, 149 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.km | 90 |
| abstract_inverted_index.of | 3, 35, 62, 83, 91, 94, 105 |
| abstract_inverted_index.to | 130, 166 |
| abstract_inverted_index.we | 45, 121 |
| abstract_inverted_index.Our | 137, 160 |
| abstract_inverted_index.Out | 93 |
| abstract_inverted_index.and | 32, 56, 60, 80, 151 |
| abstract_inverted_index.can | 113 |
| abstract_inverted_index.for | 10, 58, 156 |
| abstract_inverted_index.key | 7 |
| abstract_inverted_index.set | 82 |
| abstract_inverted_index.the | 142, 153 |
| abstract_inverted_index.1000 | 89 |
| abstract_inverted_index.100K | 74, 96 |
| abstract_inverted_index.Data | 125 |
| abstract_inverted_index.Road | 47 |
| abstract_inverted_index.cost | 155 |
| abstract_inverted_index.end, | 44 |
| abstract_inverted_index.etc. | 41 |
| abstract_inverted_index.fine | 103 |
| abstract_inverted_index.from | 77 |
| abstract_inverted_index.have | 102 |
| abstract_inverted_index.more | 87 |
| abstract_inverted_index.road | 36, 63, 106 |
| abstract_inverted_index.safe | 11 |
| abstract_inverted_index.than | 88 |
| abstract_inverted_index.that | 112, 141 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.will | 162 |
| abstract_inverted_index.with | 108 |
| abstract_inverted_index.S100K | 72 |
| abstract_inverted_index.based | 127 |
| abstract_inverted_index.data. | 136 |
| abstract_inverted_index.i.e., | 38 |
| abstract_inverted_index.kinds | 34 |
| abstract_inverted_index.large | 79 |
| abstract_inverted_index.roads | 22 |
| abstract_inverted_index.these | 95 |
| abstract_inverted_index.urban | 21 |
| abstract_inverted_index.video | 84 |
| abstract_inverted_index.water | 30 |
| abstract_inverted_index.while | 23 |
| abstract_inverted_index.14,000 | 100 |
| abstract_inverted_index.86,000 | 109 |
| abstract_inverted_index.Region | 48 |
| abstract_inverted_index.factor | 9 |
| abstract_inverted_index.future | 168 |
| abstract_inverted_index.gravel | 40 |
| abstract_inverted_index.images | 75, 101, 111 |
| abstract_inverted_index.method | 144 |
| abstract_inverted_index.tasks. | 159 |
| abstract_inverted_index.dataset | 50, 55 |
| abstract_inverted_index.diverse | 81 |
| abstract_inverted_index.driving | 17 |
| abstract_inverted_index.images, | 99 |
| abstract_inverted_index.improve | 131 |
| abstract_inverted_index.methods | 148 |
| abstract_inverted_index.patches | 37 |
| abstract_inverted_index.present | 122 |
| abstract_inverted_index.privacy | 97 |
| abstract_inverted_index.provide | 19 |
| abstract_inverted_index.reduces | 152 |
| abstract_inverted_index.results | 139 |
| abstract_inverted_index.through | 116 |
| abstract_inverted_index.various | 33 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.Sampling | 126 |
| abstract_inverted_index.Semantic | 1 |
| abstract_inverted_index.covering | 86 |
| abstract_inverted_index.datasets | 18 |
| abstract_inverted_index.driving. | 13 |
| abstract_inverted_index.earthen, | 39 |
| abstract_inverted_index.enabling | 8 |
| abstract_inverted_index.existing | 15 |
| abstract_inverted_index.ignoring | 24 |
| abstract_inverted_index.improves | 146 |
| abstract_inverted_index.labeling | 154 |
| abstract_inverted_index.learning | 118, 132, 147 |
| abstract_inverted_index.methods. | 119 |
| abstract_inverted_index.proposed | 143 |
| abstract_inverted_index.publicly | 164 |
| abstract_inverted_index.puddles, | 31 |
| abstract_inverted_index.regions, | 107 |
| abstract_inverted_index.research | 169 |
| abstract_inverted_index.roadways | 4, 26 |
| abstract_inverted_index.semantic | 157 |
| abstract_inverted_index.training | 59 |
| abstract_inverted_index.Efficient | 124 |
| abstract_inverted_index.available | 165 |
| abstract_inverted_index.benchmark | 57, 161 |
| abstract_inverted_index.comprises | 73 |
| abstract_inverted_index.distress, | 28 |
| abstract_inverted_index.extracted | 76 |
| abstract_inverted_index.framework | 129 |
| abstract_inverted_index.introduce | 46 |
| abstract_inverted_index.leveraged | 115 |
| abstract_inverted_index.potholes, | 29 |
| abstract_inverted_index.roadways. | 69, 92 |
| abstract_inverted_index.sequences | 85 |
| abstract_inverted_index.unlabeled | 110, 135 |
| abstract_inverted_index.Alongside, | 120 |
| abstract_inverted_index.S100K)—a | 53 |
| abstract_inverted_index.autonomous | 12, 16 |
| abstract_inverted_index.containing | 27 |
| abstract_inverted_index.evaluation | 61 |
| abstract_inverted_index.facilitate | 167 |
| abstract_inverted_index.leveraging | 134 |
| abstract_inverted_index.respecting | 98 |
| abstract_inverted_index.challenging | 67 |
| abstract_inverted_index.demonstrate | 140 |
| abstract_inverted_index.large-scale | 54 |
| abstract_inverted_index.Segmentation | 49 |
| abstract_inverted_index.experimental | 138 |
| abstract_inverted_index.segmentation | 64, 158 |
| abstract_inverted_index.unstructured | 25, 68 |
| abstract_inverted_index.self-training | 128 |
| abstract_inverted_index.significantly | 145 |
| abstract_inverted_index.understanding | 2 |
| abstract_inverted_index.aforementioned | 66 |
| abstract_inverted_index.pixel-labeling | 104 |
| abstract_inverted_index.semi-supervised | 117 |
| abstract_inverted_index.well-structured | 20 |
| abstract_inverted_index.generalizability | 150 |
| abstract_inverted_index.https://r2s100k.github.io/ | 171 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5037574053 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I60342839 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.73676725 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |