RACDNet: Resolution- and Alignment-Aware Change Detection Network for Optical Remote Sensing Imagery Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/rs14184527
Change detection (CD) methods work on the basis of co-registered multi-temporal images with equivalent resolutions. Due to the limitation of sensor imaging conditions and revisit period, it is difficult to acquire the desired images, especially in emergency situations. In addition, accurate multi-temporal images co-registration is largely limited by vast object changes and matching algorithms. To this end, a resolution- and alignment-aware change detection network (RACDNet) is proposed for multi-resolution optical remote-sensing imagery CD. In the first stage, to generate high-quality bi-temporal images, a light-weighted super-resolution network is proposed by fully considering the construction difficulty of different regions, which facilitates to detailed information recovery. Adversarial loss and perceptual loss are further adopted to improve the visual quality. In the second stage, deformable convolution units are embedded in a novel Siamese–UNet architecture for bi-temporal deep features alignment; thus, robust difference features can be generated for change information extraction. We further use an atrous convolution module to enlarge the receptive field, and an attention module to bridge the semantic gap between the encoder and decoder. To verify the effectiveness of our RACDNet, a novel multi-resolution change detection dataset (MRCDD) is created by using Google Earth. The quantitative and qualitative experimental results demonstrate that our RACDNet is capable of enhancing the details of the reconstructed images significantly, and the performance of CD surpasses other state-of-the-art methods by a large margin.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14184527
- https://www.mdpi.com/2072-4292/14/18/4527/pdf?version=1663139528
- OA Status
- gold
- Cited By
- 17
- References
- 101
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4295413873
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4295413873Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14184527Digital Object Identifier
- Title
-
RACDNet: Resolution- and Alignment-Aware Change Detection Network for Optical Remote Sensing ImageryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-10Full publication date if available
- Authors
-
Juan Tian, Daifeng Peng, Haiyan Guan, Haiyong DingList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14184527Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/18/4527/pdf?version=1663139528Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/18/4527/pdf?version=1663139528Direct OA link when available
- Concepts
-
Computer science, Change detection, Artificial intelligence, Computer vision, Encoder, Remote sensing, Pattern recognition (psychology), Geology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 7, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
101Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4295413873 |
|---|---|
| doi | https://doi.org/10.3390/rs14184527 |
| ids.doi | https://doi.org/10.3390/rs14184527 |
| ids.openalex | https://openalex.org/W4295413873 |
| fwci | 2.37750141 |
| type | article |
| title | RACDNet: Resolution- and Alignment-Aware Change Detection Network for Optical Remote Sensing Imagery |
| awards[0].id | https://openalex.org/G2013456745 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 41971414 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G1623033645 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 41801386 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G3403493030 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 41571350 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 18 |
| biblio.volume | 14 |
| biblio.last_page | 4527 |
| biblio.first_page | 4527 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T10111 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Remote Sensing in Agriculture |
| topics[2].id | https://openalex.org/T11659 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9941999912261963 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Advanced Image Fusion Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8585391640663147 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C203595873 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7369349002838135 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25389927 |
| concepts[1].display_name | Change detection |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7020297646522522 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6041982173919678 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C118505674 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4210328757762909 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[4].display_name | Encoder |
| concepts[5].id | https://openalex.org/C62649853 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3930371105670929 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[5].display_name | Remote sensing |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3789949417114258 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.08525973558425903 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C111919701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[8].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8585391640663147 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/change-detection |
| keywords[1].score | 0.7369349002838135 |
| keywords[1].display_name | Change detection |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7020297646522522 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.6041982173919678 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/encoder |
| keywords[4].score | 0.4210328757762909 |
| keywords[4].display_name | Encoder |
| keywords[5].id | https://openalex.org/keywords/remote-sensing |
| keywords[5].score | 0.3930371105670929 |
| keywords[5].display_name | Remote sensing |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3789949417114258 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.08525973558425903 |
| keywords[7].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/rs14184527 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/18/4527/pdf?version=1663139528 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14184527 |
| locations[1].id | pmh:oai:doaj.org/article:1c521736f26f40af80b1b4227aaf77fd |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 18, p 4527 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/1c521736f26f40af80b1b4227aaf77fd |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/14/18/4527/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs14184527 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100429274 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-4478-1758 |
| authorships[0].author.display_name | Juan Tian |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[0].institutions[0].id | https://openalex.org/I200845125 |
| authorships[0].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Juan Tian |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[1].author.id | https://openalex.org/A5071358222 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8966-2956 |
| authorships[1].author.display_name | Daifeng Peng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[1].institutions[0].id | https://openalex.org/I200845125 |
| authorships[1].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Daifeng Peng |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[2].author.id | https://openalex.org/A5035056634 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3691-8721 |
| authorships[2].author.display_name | Haiyan Guan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[2].institutions[0].id | https://openalex.org/I200845125 |
| authorships[2].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Haiyan Guan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[3].author.id | https://openalex.org/A5101515060 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Haiyong Ding |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[3].institutions[0].id | https://openalex.org/I200845125 |
| authorships[3].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Haiyong Ding |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/18/4527/pdf?version=1663139528 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RACDNet: Resolution- and Alignment-Aware Change Detection Network for Optical Remote Sensing Imagery |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2568858292, https://openalex.org/W1515964938, https://openalex.org/W2389381914, https://openalex.org/W2376528221, https://openalex.org/W196800607, https://openalex.org/W4390516098, https://openalex.org/W2359428812, https://openalex.org/W3181296946, https://openalex.org/W2181948922, https://openalex.org/W2015705630 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs14184527 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/18/4527/pdf?version=1663139528 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14184527 |
| primary_location.id | doi:10.3390/rs14184527 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/18/4527/pdf?version=1663139528 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14184527 |
| publication_date | 2022-09-10 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2948648905, https://openalex.org/W6752130569, https://openalex.org/W2809328251, https://openalex.org/W2958038879, https://openalex.org/W2789781087, https://openalex.org/W2157026765, https://openalex.org/W2085289201, https://openalex.org/W3027201985, https://openalex.org/W1979061792, https://openalex.org/W2132625770, https://openalex.org/W2577832105, https://openalex.org/W2144552105, https://openalex.org/W2154451793, https://openalex.org/W2804528682, https://openalex.org/W2966888491, https://openalex.org/W2789944120, https://openalex.org/W6727029182, https://openalex.org/W2099166894, https://openalex.org/W4224942241, https://openalex.org/W3042999524, https://openalex.org/W2764034829, https://openalex.org/W2412588858, https://openalex.org/W2940726923, https://openalex.org/W2767778161, https://openalex.org/W2516616494, https://openalex.org/W2751993439, https://openalex.org/W2896092083, https://openalex.org/W2896365540, https://openalex.org/W2884276099, https://openalex.org/W3010257550, https://openalex.org/W6783326637, https://openalex.org/W2908624219, https://openalex.org/W4285173877, https://openalex.org/W2986028557, https://openalex.org/W3133438312, https://openalex.org/W6803420298, https://openalex.org/W3200974967, https://openalex.org/W2951991161, https://openalex.org/W3099503507, https://openalex.org/W6789510070, https://openalex.org/W4214601273, https://openalex.org/W4285214830, https://openalex.org/W6790731625, https://openalex.org/W4285215416, https://openalex.org/W6802234969, https://openalex.org/W3005632666, https://openalex.org/W3163207600, https://openalex.org/W6803719748, https://openalex.org/W4293059536, https://openalex.org/W4285243313, https://openalex.org/W6809456617, https://openalex.org/W4226066651, https://openalex.org/W3027225766, https://openalex.org/W6797500923, https://openalex.org/W4224212608, https://openalex.org/W6804157828, https://openalex.org/W6799693294, https://openalex.org/W4224067506, https://openalex.org/W4285298122, https://openalex.org/W4226246368, https://openalex.org/W4312549298, https://openalex.org/W4312350143, https://openalex.org/W3040323135, https://openalex.org/W4284886326, https://openalex.org/W2087380704, https://openalex.org/W2121058967, https://openalex.org/W2150081556, https://openalex.org/W1885185971, https://openalex.org/W2242218935, https://openalex.org/W2963372104, https://openalex.org/W2963470893, https://openalex.org/W6791113896, https://openalex.org/W2996444841, https://openalex.org/W6803910153, https://openalex.org/W3216892772, https://openalex.org/W6806859363, https://openalex.org/W2962793481, https://openalex.org/W2601564443, https://openalex.org/W6792067159, https://openalex.org/W3036453075, https://openalex.org/W2102166818, https://openalex.org/W6806648790, https://openalex.org/W3210281071, https://openalex.org/W3135879617, https://openalex.org/W3205361185, https://openalex.org/W2808945524, https://openalex.org/W2519960185, https://openalex.org/W3124502372, https://openalex.org/W3186032668, https://openalex.org/W3130754787, https://openalex.org/W4206244656, https://openalex.org/W3099831940, https://openalex.org/W3084438775, https://openalex.org/W3212741915, https://openalex.org/W4214828290, https://openalex.org/W3207889202, https://openalex.org/W3133726918, https://openalex.org/W2782522152, https://openalex.org/W3176330035, https://openalex.org/W4206511326, https://openalex.org/W3209695792 |
| referenced_works_count | 101 |
| abstract_inverted_index.a | 57, 82, 126, 179, 223 |
| abstract_inverted_index.CD | 217 |
| abstract_inverted_index.In | 38, 73, 116 |
| abstract_inverted_index.To | 54, 172 |
| abstract_inverted_index.We | 146 |
| abstract_inverted_index.an | 149, 159 |
| abstract_inverted_index.be | 140 |
| abstract_inverted_index.by | 47, 88, 188, 222 |
| abstract_inverted_index.in | 35, 125 |
| abstract_inverted_index.is | 27, 44, 65, 86, 186, 202 |
| abstract_inverted_index.it | 26 |
| abstract_inverted_index.of | 8, 19, 94, 176, 204, 208, 216 |
| abstract_inverted_index.on | 5 |
| abstract_inverted_index.to | 16, 29, 77, 99, 111, 153, 162 |
| abstract_inverted_index.CD. | 72 |
| abstract_inverted_index.Due | 15 |
| abstract_inverted_index.The | 192 |
| abstract_inverted_index.and | 23, 51, 59, 105, 158, 170, 194, 213 |
| abstract_inverted_index.are | 108, 123 |
| abstract_inverted_index.can | 139 |
| abstract_inverted_index.for | 67, 130, 142 |
| abstract_inverted_index.gap | 166 |
| abstract_inverted_index.our | 177, 200 |
| abstract_inverted_index.the | 6, 17, 31, 74, 91, 113, 117, 155, 164, 168, 174, 206, 209, 214 |
| abstract_inverted_index.use | 148 |
| abstract_inverted_index.(CD) | 2 |
| abstract_inverted_index.deep | 132 |
| abstract_inverted_index.end, | 56 |
| abstract_inverted_index.loss | 104, 107 |
| abstract_inverted_index.that | 199 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.vast | 48 |
| abstract_inverted_index.with | 12 |
| abstract_inverted_index.work | 4 |
| abstract_inverted_index.basis | 7 |
| abstract_inverted_index.first | 75 |
| abstract_inverted_index.fully | 89 |
| abstract_inverted_index.large | 224 |
| abstract_inverted_index.novel | 127, 180 |
| abstract_inverted_index.other | 219 |
| abstract_inverted_index.thus, | 135 |
| abstract_inverted_index.units | 122 |
| abstract_inverted_index.using | 189 |
| abstract_inverted_index.which | 97 |
| abstract_inverted_index.Change | 0 |
| abstract_inverted_index.Earth. | 191 |
| abstract_inverted_index.Google | 190 |
| abstract_inverted_index.atrous | 150 |
| abstract_inverted_index.bridge | 163 |
| abstract_inverted_index.change | 61, 143, 182 |
| abstract_inverted_index.field, | 157 |
| abstract_inverted_index.images | 11, 42, 211 |
| abstract_inverted_index.module | 152, 161 |
| abstract_inverted_index.object | 49 |
| abstract_inverted_index.robust | 136 |
| abstract_inverted_index.second | 118 |
| abstract_inverted_index.sensor | 20 |
| abstract_inverted_index.stage, | 76, 119 |
| abstract_inverted_index.verify | 173 |
| abstract_inverted_index.visual | 114 |
| abstract_inverted_index.(MRCDD) | 185 |
| abstract_inverted_index.RACDNet | 201 |
| abstract_inverted_index.acquire | 30 |
| abstract_inverted_index.adopted | 110 |
| abstract_inverted_index.between | 167 |
| abstract_inverted_index.capable | 203 |
| abstract_inverted_index.changes | 50 |
| abstract_inverted_index.created | 187 |
| abstract_inverted_index.dataset | 184 |
| abstract_inverted_index.desired | 32 |
| abstract_inverted_index.details | 207 |
| abstract_inverted_index.encoder | 169 |
| abstract_inverted_index.enlarge | 154 |
| abstract_inverted_index.further | 109, 147 |
| abstract_inverted_index.imagery | 71 |
| abstract_inverted_index.images, | 33, 81 |
| abstract_inverted_index.imaging | 21 |
| abstract_inverted_index.improve | 112 |
| abstract_inverted_index.largely | 45 |
| abstract_inverted_index.limited | 46 |
| abstract_inverted_index.margin. | 225 |
| abstract_inverted_index.methods | 3, 221 |
| abstract_inverted_index.network | 63, 85 |
| abstract_inverted_index.optical | 69 |
| abstract_inverted_index.period, | 25 |
| abstract_inverted_index.results | 197 |
| abstract_inverted_index.revisit | 24 |
| abstract_inverted_index.RACDNet, | 178 |
| abstract_inverted_index.accurate | 40 |
| abstract_inverted_index.decoder. | 171 |
| abstract_inverted_index.detailed | 100 |
| abstract_inverted_index.embedded | 124 |
| abstract_inverted_index.features | 133, 138 |
| abstract_inverted_index.generate | 78 |
| abstract_inverted_index.matching | 52 |
| abstract_inverted_index.proposed | 66, 87 |
| abstract_inverted_index.quality. | 115 |
| abstract_inverted_index.regions, | 96 |
| abstract_inverted_index.semantic | 165 |
| abstract_inverted_index.(RACDNet) | 64 |
| abstract_inverted_index.addition, | 39 |
| abstract_inverted_index.attention | 160 |
| abstract_inverted_index.detection | 1, 62, 183 |
| abstract_inverted_index.different | 95 |
| abstract_inverted_index.difficult | 28 |
| abstract_inverted_index.emergency | 36 |
| abstract_inverted_index.enhancing | 205 |
| abstract_inverted_index.generated | 141 |
| abstract_inverted_index.receptive | 156 |
| abstract_inverted_index.recovery. | 102 |
| abstract_inverted_index.surpasses | 218 |
| abstract_inverted_index.alignment; | 134 |
| abstract_inverted_index.conditions | 22 |
| abstract_inverted_index.deformable | 120 |
| abstract_inverted_index.difference | 137 |
| abstract_inverted_index.difficulty | 93 |
| abstract_inverted_index.equivalent | 13 |
| abstract_inverted_index.especially | 34 |
| abstract_inverted_index.limitation | 18 |
| abstract_inverted_index.perceptual | 106 |
| abstract_inverted_index.Adversarial | 103 |
| abstract_inverted_index.algorithms. | 53 |
| abstract_inverted_index.bi-temporal | 80, 131 |
| abstract_inverted_index.considering | 90 |
| abstract_inverted_index.convolution | 121, 151 |
| abstract_inverted_index.demonstrate | 198 |
| abstract_inverted_index.extraction. | 145 |
| abstract_inverted_index.facilitates | 98 |
| abstract_inverted_index.information | 101, 144 |
| abstract_inverted_index.performance | 215 |
| abstract_inverted_index.qualitative | 195 |
| abstract_inverted_index.resolution- | 58 |
| abstract_inverted_index.situations. | 37 |
| abstract_inverted_index.architecture | 129 |
| abstract_inverted_index.construction | 92 |
| abstract_inverted_index.experimental | 196 |
| abstract_inverted_index.high-quality | 79 |
| abstract_inverted_index.quantitative | 193 |
| abstract_inverted_index.resolutions. | 14 |
| abstract_inverted_index.co-registered | 9 |
| abstract_inverted_index.effectiveness | 175 |
| abstract_inverted_index.reconstructed | 210 |
| abstract_inverted_index.Siamese–UNet | 128 |
| abstract_inverted_index.light-weighted | 83 |
| abstract_inverted_index.multi-temporal | 10, 41 |
| abstract_inverted_index.remote-sensing | 70 |
| abstract_inverted_index.significantly, | 212 |
| abstract_inverted_index.alignment-aware | 60 |
| abstract_inverted_index.co-registration | 43 |
| abstract_inverted_index.multi-resolution | 68, 181 |
| abstract_inverted_index.state-of-the-art | 220 |
| abstract_inverted_index.super-resolution | 84 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5071358222 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I200845125 |
| citation_normalized_percentile.value | 0.87785082 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |