Radar Imaging by Sparse Optimization Incorporating MRF Clustering Prior Article Swipe
Shiyong Li
,
Moeness G. Amin
,
Guoqiang Zhao
,
Houjun Sun
·
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1812.02366
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1812.02366
Recent progress in compressive sensing states the importance of exploiting intrinsic structures in sparse signal reconstruction. In this letter, we propose a Markov random field (MRF) prior in conjunction with fast iterative shrinkagethresholding algorithm (FISTA) for image reconstruction. The MRF prior is used to represent the support of sparse signals with clustered nonzero coefficients. The proposed approach is applied to the inverse synthetic aperture radar (ISAR) imaging problem. Simulations and experimental results are provided to demonstrate the performance advantages of this approach in comparison with the standard FISTA and existing MRF-based methods.
Related Topics
Concepts
Markov random field
Compressed sensing
Computer science
Artificial intelligence
Cluster analysis
Inverse problem
Iterative reconstruction
Radar imaging
Inverse synthetic aperture radar
Synthetic aperture radar
Radar
Pattern recognition (psychology)
Algorithm
Computer vision
Image (mathematics)
Mathematics
Telecommunications
Mathematical analysis
Image segmentation
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1812.02366
- https://arxiv.org/pdf/1812.02366
- OA Status
- green
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2903422315
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2903422315Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1812.02366Digital Object Identifier
- Title
-
Radar Imaging by Sparse Optimization Incorporating MRF Clustering PriorWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-12-06Full publication date if available
- Authors
-
Shiyong Li, Moeness G. Amin, Guoqiang Zhao, Houjun SunList of authors in order
- Landing page
-
https://arxiv.org/abs/1812.02366Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1812.02366Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1812.02366Direct OA link when available
- Concepts
-
Markov random field, Compressed sensing, Computer science, Artificial intelligence, Cluster analysis, Inverse problem, Iterative reconstruction, Radar imaging, Inverse synthetic aperture radar, Synthetic aperture radar, Radar, Pattern recognition (psychology), Algorithm, Computer vision, Image (mathematics), Mathematics, Telecommunications, Mathematical analysis, Image segmentationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2903422315 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1812.02366 |
| ids.doi | https://doi.org/10.48550/arxiv.1812.02366 |
| ids.mag | 2903422315 |
| ids.openalex | https://openalex.org/W2903422315 |
| fwci | |
| type | preprint |
| title | Radar Imaging by Sparse Optimization Incorporating MRF Clustering Prior |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T11739 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9998999834060669 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Microwave Imaging and Scattering Analysis |
| topics[2].id | https://openalex.org/T11038 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9990000128746033 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Advanced SAR Imaging Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778045648 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7973334789276123 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q176827 |
| concepts[0].display_name | Markov random field |
| concepts[1].id | https://openalex.org/C124851039 |
| concepts[1].level | 2 |
| concepts[1].score | 0.765536904335022 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2665459 |
| concepts[1].display_name | Compressed sensing |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6693424582481384 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5628821849822998 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C73555534 |
| concepts[4].level | 2 |
| concepts[4].score | 0.516016960144043 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[4].display_name | Cluster analysis |
| concepts[5].id | https://openalex.org/C135252773 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5027949810028076 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1567213 |
| concepts[5].display_name | Inverse problem |
| concepts[6].id | https://openalex.org/C141379421 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5021991729736328 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[6].display_name | Iterative reconstruction |
| concepts[7].id | https://openalex.org/C10929652 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4608452320098877 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7279985 |
| concepts[7].display_name | Radar imaging |
| concepts[8].id | https://openalex.org/C109094680 |
| concepts[8].level | 4 |
| concepts[8].score | 0.452411413192749 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6060432 |
| concepts[8].display_name | Inverse synthetic aperture radar |
| concepts[9].id | https://openalex.org/C87360688 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4412306845188141 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[9].display_name | Synthetic aperture radar |
| concepts[10].id | https://openalex.org/C554190296 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4360354244709015 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[10].display_name | Radar |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43438562750816345 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.42241528630256653 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C31972630 |
| concepts[13].level | 1 |
| concepts[13].score | 0.35075142979621887 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[13].display_name | Computer vision |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.34079837799072266 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.22201314568519592 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C124504099 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[18].display_name | Image segmentation |
| keywords[0].id | https://openalex.org/keywords/markov-random-field |
| keywords[0].score | 0.7973334789276123 |
| keywords[0].display_name | Markov random field |
| keywords[1].id | https://openalex.org/keywords/compressed-sensing |
| keywords[1].score | 0.765536904335022 |
| keywords[1].display_name | Compressed sensing |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6693424582481384 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5628821849822998 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/cluster-analysis |
| keywords[4].score | 0.516016960144043 |
| keywords[4].display_name | Cluster analysis |
| keywords[5].id | https://openalex.org/keywords/inverse-problem |
| keywords[5].score | 0.5027949810028076 |
| keywords[5].display_name | Inverse problem |
| keywords[6].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[6].score | 0.5021991729736328 |
| keywords[6].display_name | Iterative reconstruction |
| keywords[7].id | https://openalex.org/keywords/radar-imaging |
| keywords[7].score | 0.4608452320098877 |
| keywords[7].display_name | Radar imaging |
| keywords[8].id | https://openalex.org/keywords/inverse-synthetic-aperture-radar |
| keywords[8].score | 0.452411413192749 |
| keywords[8].display_name | Inverse synthetic aperture radar |
| keywords[9].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[9].score | 0.4412306845188141 |
| keywords[9].display_name | Synthetic aperture radar |
| keywords[10].id | https://openalex.org/keywords/radar |
| keywords[10].score | 0.4360354244709015 |
| keywords[10].display_name | Radar |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.43438562750816345 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.42241528630256653 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/computer-vision |
| keywords[13].score | 0.35075142979621887 |
| keywords[13].display_name | Computer vision |
| keywords[14].id | https://openalex.org/keywords/image |
| keywords[14].score | 0.34079837799072266 |
| keywords[14].display_name | Image (mathematics) |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.22201314568519592 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1812.02366 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1812.02366 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1812.02366 |
| locations[1].id | doi:10.48550/arxiv.1812.02366 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1812.02366 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100780833 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2990-0497 |
| authorships[0].author.display_name | Shiyong Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Millimeter Wave and Terahertz Technology Beijing Institute of Technology,Beijing,China |
| authorships[0].institutions[0].id | https://openalex.org/I125839683 |
| authorships[0].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shiyong Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Key Laboratory of Millimeter Wave and Terahertz Technology Beijing Institute of Technology,Beijing,China |
| authorships[1].author.id | https://openalex.org/A5007661434 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0926-4120 |
| authorships[1].author.display_name | Moeness G. Amin |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I7863295 |
| authorships[1].affiliations[0].raw_affiliation_string | [Center for Advanced Communications, Villanova University, Villanova, PA, USA] |
| authorships[1].institutions[0].id | https://openalex.org/I7863295 |
| authorships[1].institutions[0].ror | https://ror.org/02g7kd627 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I7863295 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Villanova University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Moeness Amin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | [Center for Advanced Communications, Villanova University, Villanova, PA, USA] |
| authorships[2].author.id | https://openalex.org/A5034155842 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0426-1286 |
| authorships[2].author.display_name | Guoqiang Zhao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Millimeter Wave and Terahertz Technology Beijing Institute of Technology,Beijing,China |
| authorships[2].institutions[0].id | https://openalex.org/I125839683 |
| authorships[2].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guoqiang Zhao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing Key Laboratory of Millimeter Wave and Terahertz Technology Beijing Institute of Technology,Beijing,China |
| authorships[3].author.id | https://openalex.org/A5049329700 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6933-5261 |
| authorships[3].author.display_name | Houjun Sun |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Millimeter Wave and Terahertz Technology Beijing Institute of Technology,Beijing,China |
| authorships[3].institutions[0].id | https://openalex.org/I125839683 |
| authorships[3].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Institute of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Houjun Sun |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beijing Key Laboratory of Millimeter Wave and Terahertz Technology Beijing Institute of Technology,Beijing,China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1812.02366 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Radar Imaging by Sparse Optimization Incorporating MRF Clustering Prior |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W2540450177, https://openalex.org/W2170580735, https://openalex.org/W2896778670, https://openalex.org/W1552305638, https://openalex.org/W2112228652, https://openalex.org/W1994788526, https://openalex.org/W2011609146, https://openalex.org/W1915418828, https://openalex.org/W2613451563, https://openalex.org/W1966299760 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1812.02366 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1812.02366 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1812.02366 |
| primary_location.id | pmh:oai:arXiv.org:1812.02366 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1812.02366 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1812.02366 |
| publication_date | 2018-12-06 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2145096794, https://openalex.org/W2164278908, https://openalex.org/W2038082462, https://openalex.org/W1651266332, https://openalex.org/W3106359998, https://openalex.org/W1980651854, https://openalex.org/W1500149156, https://openalex.org/W2767912357, https://openalex.org/W2082476922, https://openalex.org/W2146000945, https://openalex.org/W2126607811, https://openalex.org/W2296616510, https://openalex.org/W2140122025, https://openalex.org/W640456376, https://openalex.org/W2063870433, https://openalex.org/W1976967648, https://openalex.org/W2091256848, https://openalex.org/W2079299474, https://openalex.org/W2303315716, https://openalex.org/W640945449, https://openalex.org/W2142224912, https://openalex.org/W1977423147 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 21 |
| abstract_inverted_index.In | 16 |
| abstract_inverted_index.in | 2, 12, 27, 82 |
| abstract_inverted_index.is | 41, 57 |
| abstract_inverted_index.of | 8, 47, 79 |
| abstract_inverted_index.to | 43, 59, 74 |
| abstract_inverted_index.we | 19 |
| abstract_inverted_index.MRF | 39 |
| abstract_inverted_index.The | 38, 54 |
| abstract_inverted_index.and | 69, 88 |
| abstract_inverted_index.are | 72 |
| abstract_inverted_index.for | 35 |
| abstract_inverted_index.the | 6, 45, 60, 76, 85 |
| abstract_inverted_index.fast | 30 |
| abstract_inverted_index.this | 17, 80 |
| abstract_inverted_index.used | 42 |
| abstract_inverted_index.with | 29, 50, 84 |
| abstract_inverted_index.(MRF) | 25 |
| abstract_inverted_index.FISTA | 87 |
| abstract_inverted_index.field | 24 |
| abstract_inverted_index.image | 36 |
| abstract_inverted_index.prior | 26, 40 |
| abstract_inverted_index.radar | 64 |
| abstract_inverted_index.(ISAR) | 65 |
| abstract_inverted_index.Markov | 22 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.random | 23 |
| abstract_inverted_index.signal | 14 |
| abstract_inverted_index.sparse | 13, 48 |
| abstract_inverted_index.states | 5 |
| abstract_inverted_index.(FISTA) | 34 |
| abstract_inverted_index.applied | 58 |
| abstract_inverted_index.imaging | 66 |
| abstract_inverted_index.inverse | 61 |
| abstract_inverted_index.letter, | 18 |
| abstract_inverted_index.nonzero | 52 |
| abstract_inverted_index.propose | 20 |
| abstract_inverted_index.results | 71 |
| abstract_inverted_index.sensing | 4 |
| abstract_inverted_index.signals | 49 |
| abstract_inverted_index.support | 46 |
| abstract_inverted_index.aperture | 63 |
| abstract_inverted_index.approach | 56, 81 |
| abstract_inverted_index.existing | 89 |
| abstract_inverted_index.methods. | 91 |
| abstract_inverted_index.problem. | 67 |
| abstract_inverted_index.progress | 1 |
| abstract_inverted_index.proposed | 55 |
| abstract_inverted_index.provided | 73 |
| abstract_inverted_index.standard | 86 |
| abstract_inverted_index.MRF-based | 90 |
| abstract_inverted_index.algorithm | 33 |
| abstract_inverted_index.clustered | 51 |
| abstract_inverted_index.intrinsic | 10 |
| abstract_inverted_index.iterative | 31 |
| abstract_inverted_index.represent | 44 |
| abstract_inverted_index.synthetic | 62 |
| abstract_inverted_index.advantages | 78 |
| abstract_inverted_index.comparison | 83 |
| abstract_inverted_index.exploiting | 9 |
| abstract_inverted_index.importance | 7 |
| abstract_inverted_index.structures | 11 |
| abstract_inverted_index.Simulations | 68 |
| abstract_inverted_index.compressive | 3 |
| abstract_inverted_index.conjunction | 28 |
| abstract_inverted_index.demonstrate | 75 |
| abstract_inverted_index.performance | 77 |
| abstract_inverted_index.experimental | 70 |
| abstract_inverted_index.coefficients. | 53 |
| abstract_inverted_index.reconstruction. | 15, 37 |
| abstract_inverted_index.shrinkagethresholding | 32 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |