Radial Basis Function-based Quantum Hybrid Classical Generative Adversarial Networks for Enhanced Image Quality and Training Stability Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-4195599/v1
Quantum Generative Adversarial Networks (QGANs), as the quantum version to classical Generative Adversarial Networks, exhibit exponential advantages in certain aspects, garnering considerable attention. However, within this nascent field, challenges persist in the synthesis of image quality and the stability of training in QGANs. In this work, we introduce a Hybrid Quantum Classical Generative Adversarial Network (HQCGAN), incorporating a classical discriminator constructed using Radial Basis Function Neural Networks (RBFNN). Harnessing the superior non-linear data processing capabilities and inherent resilience to image noise of RBFNNs, our HQCGAN significantly enhances its proficiency in generating high-fidelity grayscale images characterized by discrete value distributions. Through a series of meticulous experiments that evaluated the training cross-validation scores and the robustness of the loss functions, we have demonstrated the exceptional performance of our HQCGAN model, especially in the presence of noisy input data. These findings contribute meaningfully to the burgeoning field of quantum generative models, underscoring the vital role played by classical machine learning components in augmenting the overall efficacy of quantum approaches. The incorporation of RBFNNs within a quantum framework in our study offers novel perspectives to address prevailing challenges related to image quality and training stability, marking a substantial progression in the evolution of quantum generative adversarial networks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-4195599/v1
- https://www.researchsquare.com/article/rs-4195599/latest.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393951574
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393951574Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-4195599/v1Digital Object Identifier
- Title
-
Radial Basis Function-based Quantum Hybrid Classical Generative Adversarial Networks for Enhanced Image Quality and Training StabilityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-04Full publication date if available
- Authors
-
Zuyu Xu, Tao Yang, Pengnian Cai, Kang Shen, Yuanming Hu, Bin Lv, Shixian Chen, Yunlai Zhu, Zuheng Wu, Jun Wang, Yuehua DaiList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-4195599/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-4195599/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-4195599/latest.pdfDirect OA link when available
- Concepts
-
Adversarial system, Stability (learning theory), Generative grammar, Quality (philosophy), Artificial intelligence, Function (biology), Training (meteorology), Quantum, Computer science, Image (mathematics), Radial basis function, Basis (linear algebra), Mathematics, Artificial neural network, Machine learning, Physics, Geometry, Quantum mechanics, Meteorology, Evolutionary biology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393951574 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-4195599/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-4195599/v1 |
| ids.openalex | https://openalex.org/W4393951574 |
| fwci | 0.53015756 |
| type | preprint |
| title | Radial Basis Function-based Quantum Hybrid Classical Generative Adversarial Networks for Enhanced Image Quality and Training Stability |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9926999807357788 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7066872119903564 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C112972136 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6898125410079956 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[1].display_name | Stability (learning theory) |
| concepts[2].id | https://openalex.org/C39890363 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6717561483383179 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[2].display_name | Generative grammar |
| concepts[3].id | https://openalex.org/C2779530757 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5407609343528748 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[3].display_name | Quality (philosophy) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5266221165657043 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C14036430 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5135191082954407 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[5].display_name | Function (biology) |
| concepts[6].id | https://openalex.org/C2777211547 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5069763660430908 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[6].display_name | Training (meteorology) |
| concepts[7].id | https://openalex.org/C84114770 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4821983873844147 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q46344 |
| concepts[7].display_name | Quantum |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.46950244903564453 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43846020102500916 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| concepts[10].id | https://openalex.org/C98856871 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4374775290489197 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1588488 |
| concepts[10].display_name | Radial basis function |
| concepts[11].id | https://openalex.org/C12426560 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41389212012290955 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189569 |
| concepts[11].display_name | Basis (linear algebra) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3136381506919861 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.29647165536880493 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.24767008423805237 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.13644671440124512 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08615231513977051 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0836038589477539 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C153294291 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[18].display_name | Meteorology |
| concepts[19].id | https://openalex.org/C78458016 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[19].display_name | Evolutionary biology |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.7066872119903564 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/stability |
| keywords[1].score | 0.6898125410079956 |
| keywords[1].display_name | Stability (learning theory) |
| keywords[2].id | https://openalex.org/keywords/generative-grammar |
| keywords[2].score | 0.6717561483383179 |
| keywords[2].display_name | Generative grammar |
| keywords[3].id | https://openalex.org/keywords/quality |
| keywords[3].score | 0.5407609343528748 |
| keywords[3].display_name | Quality (philosophy) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5266221165657043 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/function |
| keywords[5].score | 0.5135191082954407 |
| keywords[5].display_name | Function (biology) |
| keywords[6].id | https://openalex.org/keywords/training |
| keywords[6].score | 0.5069763660430908 |
| keywords[6].display_name | Training (meteorology) |
| keywords[7].id | https://openalex.org/keywords/quantum |
| keywords[7].score | 0.4821983873844147 |
| keywords[7].display_name | Quantum |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.46950244903564453 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/image |
| keywords[9].score | 0.43846020102500916 |
| keywords[9].display_name | Image (mathematics) |
| keywords[10].id | https://openalex.org/keywords/radial-basis-function |
| keywords[10].score | 0.4374775290489197 |
| keywords[10].display_name | Radial basis function |
| keywords[11].id | https://openalex.org/keywords/basis |
| keywords[11].score | 0.41389212012290955 |
| keywords[11].display_name | Basis (linear algebra) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.3136381506919861 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.29647165536880493 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.24767008423805237 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.13644671440124512 |
| keywords[15].display_name | Physics |
| keywords[16].id | https://openalex.org/keywords/geometry |
| keywords[16].score | 0.08615231513977051 |
| keywords[16].display_name | Geometry |
| keywords[17].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[17].score | 0.0836038589477539 |
| keywords[17].display_name | Quantum mechanics |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-4195599/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-4195599/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-4195599/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5049469312 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5042-0703 |
| authorships[0].author.display_name | Zuyu Xu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[0].affiliations[0].raw_affiliation_string | Anhui University |
| authorships[0].institutions[0].id | https://openalex.org/I143868143 |
| authorships[0].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zuyu Xu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Anhui University |
| authorships[1].author.id | https://openalex.org/A5101781510 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1094-5617 |
| authorships[1].author.display_name | Tao Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[1].affiliations[0].raw_affiliation_string | Anhui University |
| authorships[1].institutions[0].id | https://openalex.org/I143868143 |
| authorships[1].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Anhui University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tao Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Anhui University |
| authorships[2].author.id | https://openalex.org/A5111234430 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Pengnian Cai |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[2].affiliations[0].raw_affiliation_string | Anhui University |
| authorships[2].institutions[0].id | https://openalex.org/I143868143 |
| authorships[2].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pengnian Cai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Anhui University |
| authorships[3].author.id | https://openalex.org/A5101013237 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Kang Shen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[3].affiliations[0].raw_affiliation_string | Anhui University |
| authorships[3].institutions[0].id | https://openalex.org/I143868143 |
| authorships[3].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Anhui University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kang Shen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Anhui University |
| authorships[4].author.id | https://openalex.org/A5068155662 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1136-9909 |
| authorships[4].author.display_name | Yuanming Hu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[4].affiliations[0].raw_affiliation_string | Anhui University |
| authorships[4].institutions[0].id | https://openalex.org/I143868143 |
| authorships[4].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Anhui University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yuanming Hu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Anhui University |
| authorships[5].author.id | https://openalex.org/A5101977068 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6961-7082 |
| authorships[5].author.display_name | Bin Lv |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[5].affiliations[0].raw_affiliation_string | Anhui University |
| authorships[5].institutions[0].id | https://openalex.org/I143868143 |
| authorships[5].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Anhui University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Bin Lv |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Anhui University |
| authorships[6].author.id | https://openalex.org/A5102873422 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Shixian Chen |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4472751 |
| authorships[6].affiliations[0].raw_affiliation_string | Anhui Normal University |
| authorships[6].institutions[0].id | https://openalex.org/I4472751 |
| authorships[6].institutions[0].ror | https://ror.org/05fsfvw79 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4472751 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Anhui Normal University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Shixian Chen |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Anhui Normal University |
| authorships[7].author.id | https://openalex.org/A5041234406 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2546-5739 |
| authorships[7].author.display_name | Yunlai Zhu |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[7].affiliations[0].raw_affiliation_string | Anhui University |
| authorships[7].institutions[0].id | https://openalex.org/I143868143 |
| authorships[7].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Anhui University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yunlai Zhu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Anhui University |
| authorships[8].author.id | https://openalex.org/A5057741320 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6465-5570 |
| authorships[8].author.display_name | Zuheng Wu |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[8].affiliations[0].raw_affiliation_string | Anhui University |
| authorships[8].institutions[0].id | https://openalex.org/I143868143 |
| authorships[8].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Anhui University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zuheng Wu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Anhui University |
| authorships[9].author.id | https://openalex.org/A5100712167 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-9548-0411 |
| authorships[9].author.display_name | Jun Wang |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[9].affiliations[0].raw_affiliation_string | Anhui University |
| authorships[9].institutions[0].id | https://openalex.org/I143868143 |
| authorships[9].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Anhui University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Jun Wang |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Anhui University |
| authorships[10].author.id | https://openalex.org/A5101698907 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-4233-1313 |
| authorships[10].author.display_name | Yuehua Dai |
| authorships[10].countries | CN |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[10].affiliations[0].raw_affiliation_string | Anhui University |
| authorships[10].institutions[0].id | https://openalex.org/I143868143 |
| authorships[10].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[10].institutions[0].country_code | CN |
| authorships[10].institutions[0].display_name | Anhui University |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Yuehua Dai |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Anhui University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-4195599/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Radial Basis Function-based Quantum Hybrid Classical Generative Adversarial Networks for Enhanced Image Quality and Training Stability |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W2502115930, https://openalex.org/W2482350142, https://openalex.org/W4246396837, https://openalex.org/W3176240006, https://openalex.org/W3126451824, https://openalex.org/W1561927205, https://openalex.org/W3191453585, https://openalex.org/W4297672492, https://openalex.org/W2374946871, https://openalex.org/W1572661297 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-4195599/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-4195599/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4195599/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-4195599/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-4195599/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4195599/v1 |
| publication_date | 2024-04-04 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2923537029, https://openalex.org/W1901616594, https://openalex.org/W2482126025, https://openalex.org/W2929211992, https://openalex.org/W3132013874, https://openalex.org/W2559394418, https://openalex.org/W4296126438, https://openalex.org/W4206419394, https://openalex.org/W2798967590, https://openalex.org/W2798945316, https://openalex.org/W4367663152, https://openalex.org/W2903891684, https://openalex.org/W3034762567, https://openalex.org/W2887511498, https://openalex.org/W2907512006, https://openalex.org/W3092977835, https://openalex.org/W4307416422, https://openalex.org/W2781738013, https://openalex.org/W4213212652, https://openalex.org/W6753935598, https://openalex.org/W3047041739, https://openalex.org/W2945680873, https://openalex.org/W3111162498, https://openalex.org/W4308748039, https://openalex.org/W4308033654, https://openalex.org/W4285112958, https://openalex.org/W3212169067, https://openalex.org/W2161685427, https://openalex.org/W2797767079, https://openalex.org/W2112796928, https://openalex.org/W4387042027, https://openalex.org/W6607332381, https://openalex.org/W2886334830, https://openalex.org/W3102505535, https://openalex.org/W3101427288, https://openalex.org/W4387375603, https://openalex.org/W2764347725, https://openalex.org/W3125318774, https://openalex.org/W3106984071, https://openalex.org/W3100111077, https://openalex.org/W3100931082 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 49, 58, 101, 172, 193 |
| abstract_inverted_index.In | 44 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.by | 96, 154 |
| abstract_inverted_index.in | 18, 31, 42, 90, 130, 159, 175, 196 |
| abstract_inverted_index.of | 34, 40, 82, 103, 115, 125, 133, 145, 164, 169, 199 |
| abstract_inverted_index.to | 10, 79, 141, 181, 186 |
| abstract_inverted_index.we | 47, 119 |
| abstract_inverted_index.The | 167 |
| abstract_inverted_index.and | 37, 76, 112, 189 |
| abstract_inverted_index.its | 88 |
| abstract_inverted_index.our | 84, 126, 176 |
| abstract_inverted_index.the | 7, 32, 38, 70, 108, 113, 116, 122, 131, 142, 150, 161, 197 |
| abstract_inverted_index.data | 73 |
| abstract_inverted_index.have | 120 |
| abstract_inverted_index.loss | 117 |
| abstract_inverted_index.role | 152 |
| abstract_inverted_index.that | 106 |
| abstract_inverted_index.this | 26, 45 |
| abstract_inverted_index.Basis | 64 |
| abstract_inverted_index.These | 137 |
| abstract_inverted_index.data. | 136 |
| abstract_inverted_index.field | 144 |
| abstract_inverted_index.image | 35, 80, 187 |
| abstract_inverted_index.input | 135 |
| abstract_inverted_index.noise | 81 |
| abstract_inverted_index.noisy | 134 |
| abstract_inverted_index.novel | 179 |
| abstract_inverted_index.study | 177 |
| abstract_inverted_index.using | 62 |
| abstract_inverted_index.value | 98 |
| abstract_inverted_index.vital | 151 |
| abstract_inverted_index.work, | 46 |
| abstract_inverted_index.HQCGAN | 85, 127 |
| abstract_inverted_index.Hybrid | 50 |
| abstract_inverted_index.Neural | 66 |
| abstract_inverted_index.QGANs. | 43 |
| abstract_inverted_index.RBFNNs | 170 |
| abstract_inverted_index.Radial | 63 |
| abstract_inverted_index.field, | 28 |
| abstract_inverted_index.images | 94 |
| abstract_inverted_index.model, | 128 |
| abstract_inverted_index.offers | 178 |
| abstract_inverted_index.played | 153 |
| abstract_inverted_index.scores | 111 |
| abstract_inverted_index.series | 102 |
| abstract_inverted_index.within | 25, 171 |
| abstract_inverted_index.Network | 55 |
| abstract_inverted_index.Quantum | 1, 51 |
| abstract_inverted_index.RBFNNs, | 83 |
| abstract_inverted_index.Through | 100 |
| abstract_inverted_index.address | 182 |
| abstract_inverted_index.certain | 19 |
| abstract_inverted_index.exhibit | 15 |
| abstract_inverted_index.machine | 156 |
| abstract_inverted_index.marking | 192 |
| abstract_inverted_index.models, | 148 |
| abstract_inverted_index.nascent | 27 |
| abstract_inverted_index.overall | 162 |
| abstract_inverted_index.persist | 30 |
| abstract_inverted_index.quality | 36, 188 |
| abstract_inverted_index.quantum | 8, 146, 165, 173, 200 |
| abstract_inverted_index.related | 185 |
| abstract_inverted_index.version | 9 |
| abstract_inverted_index.(QGANs), | 5 |
| abstract_inverted_index.(RBFNN). | 68 |
| abstract_inverted_index.Function | 65 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.Networks | 4, 67 |
| abstract_inverted_index.aspects, | 20 |
| abstract_inverted_index.discrete | 97 |
| abstract_inverted_index.efficacy | 163 |
| abstract_inverted_index.enhances | 87 |
| abstract_inverted_index.findings | 138 |
| abstract_inverted_index.inherent | 77 |
| abstract_inverted_index.learning | 157 |
| abstract_inverted_index.presence | 132 |
| abstract_inverted_index.superior | 71 |
| abstract_inverted_index.training | 41, 109, 190 |
| abstract_inverted_index.(HQCGAN), | 56 |
| abstract_inverted_index.Classical | 52 |
| abstract_inverted_index.Networks, | 14 |
| abstract_inverted_index.classical | 11, 59, 155 |
| abstract_inverted_index.evaluated | 107 |
| abstract_inverted_index.evolution | 198 |
| abstract_inverted_index.framework | 174 |
| abstract_inverted_index.garnering | 21 |
| abstract_inverted_index.grayscale | 93 |
| abstract_inverted_index.introduce | 48 |
| abstract_inverted_index.networks. | 203 |
| abstract_inverted_index.stability | 39 |
| abstract_inverted_index.synthesis | 33 |
| abstract_inverted_index.Generative | 2, 12, 53 |
| abstract_inverted_index.Harnessing | 69 |
| abstract_inverted_index.advantages | 17 |
| abstract_inverted_index.attention. | 23 |
| abstract_inverted_index.augmenting | 160 |
| abstract_inverted_index.burgeoning | 143 |
| abstract_inverted_index.challenges | 29, 184 |
| abstract_inverted_index.components | 158 |
| abstract_inverted_index.contribute | 139 |
| abstract_inverted_index.especially | 129 |
| abstract_inverted_index.functions, | 118 |
| abstract_inverted_index.generating | 91 |
| abstract_inverted_index.generative | 147, 201 |
| abstract_inverted_index.meticulous | 104 |
| abstract_inverted_index.non-linear | 72 |
| abstract_inverted_index.prevailing | 183 |
| abstract_inverted_index.processing | 74 |
| abstract_inverted_index.resilience | 78 |
| abstract_inverted_index.robustness | 114 |
| abstract_inverted_index.stability, | 191 |
| abstract_inverted_index.Adversarial | 3, 13, 54 |
| abstract_inverted_index.adversarial | 202 |
| abstract_inverted_index.approaches. | 166 |
| abstract_inverted_index.constructed | 61 |
| abstract_inverted_index.exceptional | 123 |
| abstract_inverted_index.experiments | 105 |
| abstract_inverted_index.exponential | 16 |
| abstract_inverted_index.performance | 124 |
| abstract_inverted_index.proficiency | 89 |
| abstract_inverted_index.progression | 195 |
| abstract_inverted_index.substantial | 194 |
| abstract_inverted_index.capabilities | 75 |
| abstract_inverted_index.considerable | 22 |
| abstract_inverted_index.demonstrated | 121 |
| abstract_inverted_index.meaningfully | 140 |
| abstract_inverted_index.perspectives | 180 |
| abstract_inverted_index.underscoring | 149 |
| abstract_inverted_index.characterized | 95 |
| abstract_inverted_index.discriminator | 60 |
| abstract_inverted_index.high-fidelity | 92 |
| abstract_inverted_index.incorporating | 57 |
| abstract_inverted_index.incorporation | 168 |
| abstract_inverted_index.significantly | 86 |
| abstract_inverted_index.distributions. | 99 |
| abstract_inverted_index.cross-validation | 110 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.53642822 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |