Radio Galaxy Zoo: Leveraging latent space representations from variational autoencoder Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1088/1475-7516/2024/06/034
We propose to learn latent space representations of radio galaxies, and train a very deep variational autoencoder ( VDVAE ) on RGZ DR1, an unlabeled dataset, to this end. We show that the encoded features can be leveraged for downstream tasks such as classifying galaxies in labeled datasets, and similarity search. Results show that the model is able to reconstruct its given inputs, capturing the salient features of the latter. We use the latent codes of galaxy images, from MiraBest Confident and FR-DEEP NVSS datasets, to train various non-neural network classifiers. It is found that the latter can differentiate FRI from FRII galaxies achieving accuracy ≥ 76%, roc-auc ≥ 0.86, specificity ≥ 0.73 and recall ≥ 0.78 on MiraBest Confident dataset, comparable to results obtained in previous studies. The performance of simple classifiers trained on FR-DEEP NVSS data representations is on par with that of a deep learning classifier (CNN based) trained on images in previous work, highlighting how powerful the compressed information is. We successfully exploit the learned representations to search for galaxies in a dataset that are semantically similar to a query image belonging to a different dataset. Although generating new galaxy images (e.g. for data augmentation) is not our primary objective, we find that the VDVAE model is a relatively good emulator. Finally, as a step toward detecting anomaly/novelty, a density estimator — Masked Autoregressive Flow ( MAF ) — is trained on the latent codes, such that the log-likelihood of data can be estimated. The downstream tasks conducted in this work demonstrate the meaningfulness of the latent codes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1475-7516/2024/06/034
- OA Status
- hybrid
- Cited By
- 3
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399672461
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399672461Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1475-7516/2024/06/034Digital Object Identifier
- Title
-
Radio Galaxy Zoo: Leveraging latent space representations from variational autoencoderWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-01Full publication date if available
- Authors
-
Sambatra Andrianomena, Hongming TangList of authors in order
- Landing page
-
https://doi.org/10.1088/1475-7516/2024/06/034Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1475-7516/2024/06/034Direct OA link when available
- Concepts
-
Autoencoder, Artificial intelligence, Computer science, Pattern recognition (psychology), Deep learning, Artificial neural networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399672461 |
|---|---|
| doi | https://doi.org/10.1088/1475-7516/2024/06/034 |
| ids.doi | https://doi.org/10.1088/1475-7516/2024/06/034 |
| ids.openalex | https://openalex.org/W4399672461 |
| fwci | 1.80034873 |
| type | article |
| title | Radio Galaxy Zoo: Leveraging latent space representations from variational autoencoder |
| biblio.issue | 06 |
| biblio.volume | 2024 |
| biblio.last_page | 034 |
| biblio.first_page | 034 |
| topics[0].id | https://openalex.org/T12450 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9821000099182129 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3103 |
| topics[0].subfield.display_name | Astronomy and Astrophysics |
| topics[0].display_name | Radio Astronomy Observations and Technology |
| topics[1].id | https://openalex.org/T13650 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9569000005722046 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Computational Physics and Python Applications |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9330000281333923 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C101738243 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7529025077819824 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[0].display_name | Autoencoder |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6549524664878845 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.54939204454422 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5151664018630981 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4476451575756073 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4203771948814392 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| keywords[0].id | https://openalex.org/keywords/autoencoder |
| keywords[0].score | 0.7529025077819824 |
| keywords[0].display_name | Autoencoder |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6549524664878845 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.54939204454422 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5151664018630981 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.4476451575756073 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.4203771948814392 |
| keywords[5].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.1088/1475-7516/2024/06/034 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120662888 |
| locations[0].source.issn | 1475-7508, 1475-7516 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1475-7508 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Cosmology and Astroparticle Physics |
| locations[0].source.host_organization | https://openalex.org/P4310311669 |
| locations[0].source.host_organization_name | Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Cosmology and Astroparticle Physics |
| locations[0].landing_page_url | https://doi.org/10.1088/1475-7516/2024/06/034 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5038445526 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5957-0719 |
| authorships[0].author.display_name | Sambatra Andrianomena |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sambatra Andrianomena |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5030886816 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7300-9239 |
| authorships[1].author.display_name | Hongming Tang |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Hongming Tang |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1475-7516/2024/06/034 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Radio Galaxy Zoo: Leveraging latent space representations from variational autoencoder |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12450 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9821000099182129 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3103 |
| primary_topic.subfield.display_name | Astronomy and Astrophysics |
| primary_topic.display_name | Radio Astronomy Observations and Technology |
| related_works | https://openalex.org/W2669956259, https://openalex.org/W4249005693, https://openalex.org/W4220775285, https://openalex.org/W3088732000, https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W3009238340, https://openalex.org/W4321369474, https://openalex.org/W4360585206, https://openalex.org/W4285208911 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1475-7516/2024/06/034 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120662888 |
| best_oa_location.source.issn | 1475-7508, 1475-7516 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1475-7508 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Cosmology and Astroparticle Physics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_name | Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Cosmology and Astroparticle Physics |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1475-7516/2024/06/034 |
| primary_location.id | doi:10.1088/1475-7516/2024/06/034 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120662888 |
| primary_location.source.issn | 1475-7508, 1475-7516 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1475-7508 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Cosmology and Astroparticle Physics |
| primary_location.source.host_organization | https://openalex.org/P4310311669 |
| primary_location.source.host_organization_name | Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Cosmology and Astroparticle Physics |
| primary_location.landing_page_url | https://doi.org/10.1088/1475-7516/2024/06/034 |
| publication_date | 2024-06-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2117233176, https://openalex.org/W1977672984, https://openalex.org/W2121048402, https://openalex.org/W3012381473, https://openalex.org/W1882938068, https://openalex.org/W2147377841, https://openalex.org/W2133030092, https://openalex.org/W2152334290, https://openalex.org/W1656881387, https://openalex.org/W2612022385, https://openalex.org/W4387580625, https://openalex.org/W2923470404, https://openalex.org/W4378533237, https://openalex.org/W4226417520, https://openalex.org/W6774314701, https://openalex.org/W6770717842, https://openalex.org/W6786614245, https://openalex.org/W6803658645, https://openalex.org/W3159224251, https://openalex.org/W3100859887, https://openalex.org/W3126921930, https://openalex.org/W2568951955, https://openalex.org/W4381161836, https://openalex.org/W6640963894, https://openalex.org/W6752145142, https://openalex.org/W6786494455, https://openalex.org/W2194775991, https://openalex.org/W3016970567, https://openalex.org/W2294798173, https://openalex.org/W6675354045, https://openalex.org/W6738536549, https://openalex.org/W6610566761, https://openalex.org/W6639317949, https://openalex.org/W6714644935, https://openalex.org/W3101816355, https://openalex.org/W3035524453, https://openalex.org/W4293849739, https://openalex.org/W3120243996, https://openalex.org/W3102966101, https://openalex.org/W3005680577, https://openalex.org/W3171007011, https://openalex.org/W4297798428, https://openalex.org/W3103803561, https://openalex.org/W4286895361, https://openalex.org/W2952838738, https://openalex.org/W2963090522, https://openalex.org/W2101234009, https://openalex.org/W1959608418 |
| referenced_works_count | 48 |
| abstract_inverted_index.( | 18, 230 |
| abstract_inverted_index.) | 20, 232 |
| abstract_inverted_index.a | 13, 146, 176, 183, 188, 212, 218, 223 |
| abstract_inverted_index.It | 92 |
| abstract_inverted_index.We | 1, 30, 71, 165 |
| abstract_inverted_index.an | 24 |
| abstract_inverted_index.as | 43, 217 |
| abstract_inverted_index.be | 37, 247 |
| abstract_inverted_index.in | 46, 126, 155, 175, 253 |
| abstract_inverted_index.is | 57, 93, 140, 200, 211, 234 |
| abstract_inverted_index.of | 8, 68, 76, 131, 145, 244, 259 |
| abstract_inverted_index.on | 21, 118, 135, 141, 153, 236 |
| abstract_inverted_index.to | 3, 27, 59, 86, 123, 171, 182, 187 |
| abstract_inverted_index.we | 205 |
| abstract_inverted_index.FRI | 100 |
| abstract_inverted_index.MAF | 231 |
| abstract_inverted_index.RGZ | 22 |
| abstract_inverted_index.The | 129, 249 |
| abstract_inverted_index.and | 11, 49, 82, 114 |
| abstract_inverted_index.are | 179 |
| abstract_inverted_index.can | 36, 98, 246 |
| abstract_inverted_index.for | 39, 173, 197 |
| abstract_inverted_index.how | 159 |
| abstract_inverted_index.is. | 164 |
| abstract_inverted_index.its | 61 |
| abstract_inverted_index.new | 193 |
| abstract_inverted_index.not | 201 |
| abstract_inverted_index.our | 202 |
| abstract_inverted_index.par | 142 |
| abstract_inverted_index.the | 33, 55, 65, 69, 73, 96, 161, 168, 208, 237, 242, 257, 260 |
| abstract_inverted_index.use | 72 |
| abstract_inverted_index.— | 226, 233 |
| abstract_inverted_index.≥ | 106, 109, 112, 116 |
| abstract_inverted_index.(CNN | 150 |
| abstract_inverted_index.0.73 | 113 |
| abstract_inverted_index.0.78 | 117 |
| abstract_inverted_index.76%, | 107 |
| abstract_inverted_index.DR1, | 23 |
| abstract_inverted_index.FRII | 102 |
| abstract_inverted_index.Flow | 229 |
| abstract_inverted_index.NVSS | 84, 137 |
| abstract_inverted_index.able | 58 |
| abstract_inverted_index.data | 138, 198, 245 |
| abstract_inverted_index.deep | 15, 147 |
| abstract_inverted_index.end. | 29 |
| abstract_inverted_index.find | 206 |
| abstract_inverted_index.from | 79, 101 |
| abstract_inverted_index.good | 214 |
| abstract_inverted_index.show | 31, 53 |
| abstract_inverted_index.step | 219 |
| abstract_inverted_index.such | 42, 240 |
| abstract_inverted_index.that | 32, 54, 95, 144, 178, 207, 241 |
| abstract_inverted_index.this | 28, 254 |
| abstract_inverted_index.very | 14 |
| abstract_inverted_index.with | 143 |
| abstract_inverted_index.work | 255 |
| abstract_inverted_index.(e.g. | 196 |
| abstract_inverted_index.0.86, | 110 |
| abstract_inverted_index.VDVAE | 19, 209 |
| abstract_inverted_index.codes | 75 |
| abstract_inverted_index.found | 94 |
| abstract_inverted_index.given | 62 |
| abstract_inverted_index.image | 185 |
| abstract_inverted_index.learn | 4 |
| abstract_inverted_index.model | 56, 210 |
| abstract_inverted_index.query | 184 |
| abstract_inverted_index.radio | 9 |
| abstract_inverted_index.space | 6 |
| abstract_inverted_index.tasks | 41, 251 |
| abstract_inverted_index.train | 12, 87 |
| abstract_inverted_index.work, | 157 |
| abstract_inverted_index.Masked | 227 |
| abstract_inverted_index.based) | 151 |
| abstract_inverted_index.codes, | 239 |
| abstract_inverted_index.codes. | 262 |
| abstract_inverted_index.galaxy | 77, 194 |
| abstract_inverted_index.images | 154, 195 |
| abstract_inverted_index.latent | 5, 74, 238, 261 |
| abstract_inverted_index.latter | 97 |
| abstract_inverted_index.recall | 115 |
| abstract_inverted_index.search | 172 |
| abstract_inverted_index.simple | 132 |
| abstract_inverted_index.toward | 220 |
| abstract_inverted_index.FR-DEEP | 83, 136 |
| abstract_inverted_index.Results | 52 |
| abstract_inverted_index.dataset | 177 |
| abstract_inverted_index.density | 224 |
| abstract_inverted_index.encoded | 34 |
| abstract_inverted_index.exploit | 167 |
| abstract_inverted_index.images, | 78 |
| abstract_inverted_index.inputs, | 63 |
| abstract_inverted_index.labeled | 47 |
| abstract_inverted_index.latter. | 70 |
| abstract_inverted_index.learned | 169 |
| abstract_inverted_index.network | 90 |
| abstract_inverted_index.primary | 203 |
| abstract_inverted_index.propose | 2 |
| abstract_inverted_index.results | 124 |
| abstract_inverted_index.roc-auc | 108 |
| abstract_inverted_index.salient | 66 |
| abstract_inverted_index.search. | 51 |
| abstract_inverted_index.similar | 181 |
| abstract_inverted_index.trained | 134, 152, 235 |
| abstract_inverted_index.various | 88 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 191 |
| abstract_inverted_index.Finally, | 216 |
| abstract_inverted_index.MiraBest | 80, 119 |
| abstract_inverted_index.accuracy | 105 |
| abstract_inverted_index.dataset, | 26, 121 |
| abstract_inverted_index.dataset. | 190 |
| abstract_inverted_index.features | 35, 67 |
| abstract_inverted_index.galaxies | 45, 103, 174 |
| abstract_inverted_index.learning | 148 |
| abstract_inverted_index.obtained | 125 |
| abstract_inverted_index.powerful | 160 |
| abstract_inverted_index.previous | 127, 156 |
| abstract_inverted_index.studies. | 128 |
| abstract_inverted_index.Confident | 81, 120 |
| abstract_inverted_index.achieving | 104 |
| abstract_inverted_index.belonging | 186 |
| abstract_inverted_index.capturing | 64 |
| abstract_inverted_index.conducted | 252 |
| abstract_inverted_index.datasets, | 48, 85 |
| abstract_inverted_index.detecting | 221 |
| abstract_inverted_index.different | 189 |
| abstract_inverted_index.emulator. | 215 |
| abstract_inverted_index.estimator | 225 |
| abstract_inverted_index.galaxies, | 10 |
| abstract_inverted_index.leveraged | 38 |
| abstract_inverted_index.unlabeled | 25 |
| abstract_inverted_index.classifier | 149 |
| abstract_inverted_index.comparable | 122 |
| abstract_inverted_index.compressed | 162 |
| abstract_inverted_index.downstream | 40, 250 |
| abstract_inverted_index.estimated. | 248 |
| abstract_inverted_index.generating | 192 |
| abstract_inverted_index.non-neural | 89 |
| abstract_inverted_index.objective, | 204 |
| abstract_inverted_index.relatively | 213 |
| abstract_inverted_index.similarity | 50 |
| abstract_inverted_index.autoencoder | 17 |
| abstract_inverted_index.classifiers | 133 |
| abstract_inverted_index.classifying | 44 |
| abstract_inverted_index.demonstrate | 256 |
| abstract_inverted_index.information | 163 |
| abstract_inverted_index.performance | 130 |
| abstract_inverted_index.reconstruct | 60 |
| abstract_inverted_index.specificity | 111 |
| abstract_inverted_index.variational | 16 |
| abstract_inverted_index.classifiers. | 91 |
| abstract_inverted_index.highlighting | 158 |
| abstract_inverted_index.semantically | 180 |
| abstract_inverted_index.successfully | 166 |
| abstract_inverted_index.augmentation) | 199 |
| abstract_inverted_index.differentiate | 99 |
| abstract_inverted_index.Autoregressive | 228 |
| abstract_inverted_index.log-likelihood | 243 |
| abstract_inverted_index.meaningfulness | 258 |
| abstract_inverted_index.representations | 7, 139, 170 |
| abstract_inverted_index.anomaly/novelty, | 222 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.80795915 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |