Radio Galaxy Zoo: Leveraging latent space representations from variational autoencoder Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.08331
We propose to learn latent space representations of radio galaxies, and train a very deep variational autoencoder (\protect\Verb+VDVAE+) on RGZ DR1, an unlabeled dataset, to this end. We show that the encoded features can be leveraged for downstream tasks such as classifying galaxies in labeled datasets, and similarity search. Results show that the model is able to reconstruct its given inputs, capturing the salient features of the latter. We use the latent codes of galaxy images, from MiraBest Confident and FR-DEEP NVSS datasets, to train various non-neural network classifiers. It is found that the latter can differentiate FRI from FRII galaxies achieving \textit{accuracy} $\ge 76\%$, \textit{roc-auc} $\ge 0.86$, \textit{specificity} $\ge 0.73$ and \textit{recall} $\ge 0.78$ on MiraBest Confident dataset, comparable to results obtained in previous studies. The performance of simple classifiers trained on FR-DEEP NVSS data representations is on par with that of a deep learning classifier (CNN based) trained on images in previous work, highlighting how powerful the compressed information is. We successfully exploit the learned representations to search for galaxies in a dataset that are semantically similar to a query image belonging to a different dataset. Although generating new galaxy images (e.g. for data augmentation) is not our primary objective, we find that the \protect\Verb+VDVAE+ model is a relatively good emulator. Finally, as a step toward detecting anomaly/novelty, a density estimator -- Masked Autoregressive Flow (\protect\Verb+MAF+) -- is trained on the latent codes, such that the log-likelihood of data can be estimated. The downstream tasks conducted in this work demonstrate the meaningfulness of the latent codes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.08331
- https://arxiv.org/pdf/2311.08331
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388717482
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388717482Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.08331Digital Object Identifier
- Title
-
Radio Galaxy Zoo: Leveraging latent space representations from variational autoencoderWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-14Full publication date if available
- Authors
-
Sambatra Andrianomena, Hongming TangList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.08331Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.08331Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.08331Direct OA link when available
- Concepts
-
Computer science, Autoencoder, Artificial intelligence, Pattern recognition (psychology), Deep learning, Artificial neural networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388717482 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.08331 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.08331 |
| ids.openalex | https://openalex.org/W4388717482 |
| fwci | |
| type | preprint |
| title | Radio Galaxy Zoo: Leveraging latent space representations from variational autoencoder |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12946 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9214000105857849 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Fractal and DNA sequence analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6554322838783264 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C101738243 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6502224206924438 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[1].display_name | Autoencoder |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6330939531326294 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5145696997642517 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4402666687965393 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42293471097946167 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6554322838783264 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/autoencoder |
| keywords[1].score | 0.6502224206924438 |
| keywords[1].display_name | Autoencoder |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6330939531326294 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5145696997642517 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.4402666687965393 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.42293471097946167 |
| keywords[5].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.08331 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.08331 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.08331 |
| locations[1].id | doi:10.48550/arxiv.2311.08331 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.08331 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038445526 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5957-0719 |
| authorships[0].author.display_name | Sambatra Andrianomena |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Andrianomena, Sambatra |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5030886816 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7300-9239 |
| authorships[1].author.display_name | Hongming Tang |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Tang, Hongming |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.08331 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-11-16T00:00:00 |
| display_name | Radio Galaxy Zoo: Leveraging latent space representations from variational autoencoder |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12946 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9214000105857849 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Fractal and DNA sequence analysis |
| related_works | https://openalex.org/W2669956259, https://openalex.org/W4249005693, https://openalex.org/W4220775285, https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W3009238340, https://openalex.org/W4321369474, https://openalex.org/W4360585206, https://openalex.org/W4285208911, https://openalex.org/W3082895349 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.08331 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.08331 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.08331 |
| primary_location.id | pmh:oai:arXiv.org:2311.08331 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.08331 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.08331 |
| publication_date | 2023-11-14 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 143, 173, 180, 185, 209, 215, 220 |
| abstract_inverted_index.-- | 223, 228 |
| abstract_inverted_index.It | 89 |
| abstract_inverted_index.We | 0, 27, 68, 162 |
| abstract_inverted_index.an | 21 |
| abstract_inverted_index.as | 40, 214 |
| abstract_inverted_index.be | 34, 242 |
| abstract_inverted_index.in | 43, 123, 152, 172, 248 |
| abstract_inverted_index.is | 54, 90, 137, 197, 208, 229 |
| abstract_inverted_index.of | 7, 65, 73, 128, 142, 239, 254 |
| abstract_inverted_index.on | 18, 115, 132, 138, 150, 231 |
| abstract_inverted_index.to | 2, 24, 56, 83, 120, 168, 179, 184 |
| abstract_inverted_index.we | 202 |
| abstract_inverted_index.FRI | 97 |
| abstract_inverted_index.RGZ | 19 |
| abstract_inverted_index.The | 126, 244 |
| abstract_inverted_index.and | 10, 46, 79, 111 |
| abstract_inverted_index.are | 176 |
| abstract_inverted_index.can | 33, 95, 241 |
| abstract_inverted_index.for | 36, 170, 194 |
| abstract_inverted_index.how | 156 |
| abstract_inverted_index.is. | 161 |
| abstract_inverted_index.its | 58 |
| abstract_inverted_index.new | 190 |
| abstract_inverted_index.not | 198 |
| abstract_inverted_index.our | 199 |
| abstract_inverted_index.par | 139 |
| abstract_inverted_index.the | 30, 52, 62, 66, 70, 93, 158, 165, 205, 232, 237, 252, 255 |
| abstract_inverted_index.use | 69 |
| abstract_inverted_index.$\ge | 103, 106, 109, 113 |
| abstract_inverted_index.(CNN | 147 |
| abstract_inverted_index.DR1, | 20 |
| abstract_inverted_index.FRII | 99 |
| abstract_inverted_index.Flow | 226 |
| abstract_inverted_index.NVSS | 81, 134 |
| abstract_inverted_index.able | 55 |
| abstract_inverted_index.data | 135, 195, 240 |
| abstract_inverted_index.deep | 14, 144 |
| abstract_inverted_index.end. | 26 |
| abstract_inverted_index.find | 203 |
| abstract_inverted_index.from | 76, 98 |
| abstract_inverted_index.good | 211 |
| abstract_inverted_index.show | 28, 50 |
| abstract_inverted_index.step | 216 |
| abstract_inverted_index.such | 39, 235 |
| abstract_inverted_index.that | 29, 51, 92, 141, 175, 204, 236 |
| abstract_inverted_index.this | 25, 249 |
| abstract_inverted_index.very | 13 |
| abstract_inverted_index.with | 140 |
| abstract_inverted_index.work | 250 |
| abstract_inverted_index.(e.g. | 193 |
| abstract_inverted_index.0.73$ | 110 |
| abstract_inverted_index.0.78$ | 114 |
| abstract_inverted_index.codes | 72 |
| abstract_inverted_index.found | 91 |
| abstract_inverted_index.given | 59 |
| abstract_inverted_index.image | 182 |
| abstract_inverted_index.learn | 3 |
| abstract_inverted_index.model | 53, 207 |
| abstract_inverted_index.query | 181 |
| abstract_inverted_index.radio | 8 |
| abstract_inverted_index.space | 5 |
| abstract_inverted_index.tasks | 38, 246 |
| abstract_inverted_index.train | 11, 84 |
| abstract_inverted_index.work, | 154 |
| abstract_inverted_index.0.86$, | 107 |
| abstract_inverted_index.76\%$, | 104 |
| abstract_inverted_index.Masked | 224 |
| abstract_inverted_index.based) | 148 |
| abstract_inverted_index.codes, | 234 |
| abstract_inverted_index.codes. | 257 |
| abstract_inverted_index.galaxy | 74, 191 |
| abstract_inverted_index.images | 151, 192 |
| abstract_inverted_index.latent | 4, 71, 233, 256 |
| abstract_inverted_index.latter | 94 |
| abstract_inverted_index.search | 169 |
| abstract_inverted_index.simple | 129 |
| abstract_inverted_index.toward | 217 |
| abstract_inverted_index.FR-DEEP | 80, 133 |
| abstract_inverted_index.Results | 49 |
| abstract_inverted_index.dataset | 174 |
| abstract_inverted_index.density | 221 |
| abstract_inverted_index.encoded | 31 |
| abstract_inverted_index.exploit | 164 |
| abstract_inverted_index.images, | 75 |
| abstract_inverted_index.inputs, | 60 |
| abstract_inverted_index.labeled | 44 |
| abstract_inverted_index.latter. | 67 |
| abstract_inverted_index.learned | 166 |
| abstract_inverted_index.network | 87 |
| abstract_inverted_index.primary | 200 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.results | 121 |
| abstract_inverted_index.salient | 63 |
| abstract_inverted_index.search. | 48 |
| abstract_inverted_index.similar | 178 |
| abstract_inverted_index.trained | 131, 149, 230 |
| abstract_inverted_index.various | 85 |
| abstract_inverted_index.Although | 188 |
| abstract_inverted_index.Finally, | 213 |
| abstract_inverted_index.MiraBest | 77, 116 |
| abstract_inverted_index.dataset, | 23, 118 |
| abstract_inverted_index.dataset. | 187 |
| abstract_inverted_index.features | 32, 64 |
| abstract_inverted_index.galaxies | 42, 100, 171 |
| abstract_inverted_index.learning | 145 |
| abstract_inverted_index.obtained | 122 |
| abstract_inverted_index.powerful | 157 |
| abstract_inverted_index.previous | 124, 153 |
| abstract_inverted_index.studies. | 125 |
| abstract_inverted_index.Confident | 78, 117 |
| abstract_inverted_index.achieving | 101 |
| abstract_inverted_index.belonging | 183 |
| abstract_inverted_index.capturing | 61 |
| abstract_inverted_index.conducted | 247 |
| abstract_inverted_index.datasets, | 45, 82 |
| abstract_inverted_index.detecting | 218 |
| abstract_inverted_index.different | 186 |
| abstract_inverted_index.emulator. | 212 |
| abstract_inverted_index.estimator | 222 |
| abstract_inverted_index.galaxies, | 9 |
| abstract_inverted_index.leveraged | 35 |
| abstract_inverted_index.unlabeled | 22 |
| abstract_inverted_index.classifier | 146 |
| abstract_inverted_index.comparable | 119 |
| abstract_inverted_index.compressed | 159 |
| abstract_inverted_index.downstream | 37, 245 |
| abstract_inverted_index.estimated. | 243 |
| abstract_inverted_index.generating | 189 |
| abstract_inverted_index.non-neural | 86 |
| abstract_inverted_index.objective, | 201 |
| abstract_inverted_index.relatively | 210 |
| abstract_inverted_index.similarity | 47 |
| abstract_inverted_index.autoencoder | 16 |
| abstract_inverted_index.classifiers | 130 |
| abstract_inverted_index.classifying | 41 |
| abstract_inverted_index.demonstrate | 251 |
| abstract_inverted_index.information | 160 |
| abstract_inverted_index.performance | 127 |
| abstract_inverted_index.reconstruct | 57 |
| abstract_inverted_index.variational | 15 |
| abstract_inverted_index.classifiers. | 88 |
| abstract_inverted_index.highlighting | 155 |
| abstract_inverted_index.semantically | 177 |
| abstract_inverted_index.successfully | 163 |
| abstract_inverted_index.augmentation) | 196 |
| abstract_inverted_index.differentiate | 96 |
| abstract_inverted_index.Autoregressive | 225 |
| abstract_inverted_index.log-likelihood | 238 |
| abstract_inverted_index.meaningfulness | 253 |
| abstract_inverted_index.\textit{recall} | 112 |
| abstract_inverted_index.representations | 6, 136, 167 |
| abstract_inverted_index.\textit{roc-auc} | 105 |
| abstract_inverted_index.anomaly/novelty, | 219 |
| abstract_inverted_index.\textit{accuracy} | 102 |
| abstract_inverted_index.(\protect\Verb+MAF+) | 227 |
| abstract_inverted_index.\protect\Verb+VDVAE+ | 206 |
| abstract_inverted_index.\textit{specificity} | 108 |
| abstract_inverted_index.(\protect\Verb+VDVAE+) | 17 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |