Radio sources segmentation and classification with deep learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.ascom.2023.100728
Modern large radio continuum surveys have high sensitivity and resolution, and can resolve previously undetected extended and diffuse emissions, which brings great challenges for the detection and morphological classification of extended sources. We present HeTu-v2, a deep learning-based source detector that uses the combined networks of Mask Region-based Convolutional Neural Networks (Mask R-CNN) and a Transformer block to achieve high-quality radio sources segmentation and classification. The sources are classified into 5 categories: Compact or point-like sources (CS), Fanaroff-Riley Type I (FRI), Fanaroff-Riley Type II (FRII), Head-Tail (HT), and Core-Jet (CJ) sources. HeTu-v2 has been trained and validated with the data from the Faint Images of the Radio Sky at Twenty-one centimeters (FIRST). We found that HeTu-v2 has a high accuracy with a mean average precision ($AP_{\rm @50:5:95}$) of 77.8%, which is 15.6 points and 11.3 points higher than that of HeTu-v1 and the original Mask R-CNN respectively. We produced a FIRST morphological catalog (FIRST-HeTu) using HeTu-v2, which contains 835,435 sources and achieves 98.6% of completeness and up to 98.5% of accuracy compared to the latest 2014 data release of the FIRST survey. HeTu-v2 could also be employed for other astronomical tasks like building sky models, associating radio components, and classifying radio galaxies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ascom.2023.100728
- OA Status
- hybrid
- Cited By
- 10
- References
- 93
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4380202023
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4380202023Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ascom.2023.100728Digital Object Identifier
- Title
-
Radio sources segmentation and classification with deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-10Full publication date if available
- Authors
-
Baoqiang Lao, Sumit Jaiswal, Zhen Zhao, Liyan Lin, Jing Wang, Xiaohui Sun, Sheng‐Li QinList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ascom.2023.100728Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ascom.2023.100728Direct OA link when available
- Concepts
-
Computer science, Sky, Artificial intelligence, Convolutional neural network, Segmentation, Deep learning, Radio galaxy, Detector, Pattern recognition (psychology), Point source, Galaxy, Physics, Astrophysics, Telecommunications, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 4, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
93Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4380202023 |
|---|---|
| doi | https://doi.org/10.1016/j.ascom.2023.100728 |
| ids.doi | https://doi.org/10.1016/j.ascom.2023.100728 |
| ids.openalex | https://openalex.org/W4380202023 |
| fwci | 0.79322668 |
| type | article |
| title | Radio sources segmentation and classification with deep learning |
| biblio.issue | |
| biblio.volume | 44 |
| biblio.last_page | 100728 |
| biblio.first_page | 100728 |
| topics[0].id | https://openalex.org/T10818 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3106 |
| topics[0].subfield.display_name | Nuclear and High Energy Physics |
| topics[0].display_name | Astrophysics and Cosmic Phenomena |
| topics[1].id | https://openalex.org/T12450 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3103 |
| topics[1].subfield.display_name | Astronomy and Astrophysics |
| topics[1].display_name | Radio Astronomy Observations and Technology |
| topics[2].id | https://openalex.org/T11323 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9835000038146973 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3103 |
| topics[2].subfield.display_name | Astronomy and Astrophysics |
| topics[2].display_name | Gamma-ray bursts and supernovae |
| is_xpac | False |
| apc_list.value | 2810 |
| apc_list.currency | USD |
| apc_list.value_usd | 2810 |
| apc_paid.value | 2810 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2810 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6932841539382935 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C73329638 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5935825705528259 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q527 |
| concepts[1].display_name | Sky |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5763915777206421 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5546978116035461 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5361793637275696 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.524509072303772 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C20249676 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5114749670028687 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q217012 |
| concepts[6].display_name | Radio galaxy |
| concepts[7].id | https://openalex.org/C94915269 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49971580505371094 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[7].display_name | Detector |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44228360056877136 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C103783831 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41884639859199524 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2552709 |
| concepts[9].display_name | Point source |
| concepts[10].id | https://openalex.org/C98444146 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3256160616874695 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q318 |
| concepts[10].display_name | Galaxy |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.25805002450942993 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C44870925 |
| concepts[12].level | 1 |
| concepts[12].score | 0.24051928520202637 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[12].display_name | Astrophysics |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.14852270483970642 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C120665830 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10401958227157593 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[14].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6932841539382935 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/sky |
| keywords[1].score | 0.5935825705528259 |
| keywords[1].display_name | Sky |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5763915777206421 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5546978116035461 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.5361793637275696 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.524509072303772 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/radio-galaxy |
| keywords[6].score | 0.5114749670028687 |
| keywords[6].display_name | Radio galaxy |
| keywords[7].id | https://openalex.org/keywords/detector |
| keywords[7].score | 0.49971580505371094 |
| keywords[7].display_name | Detector |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.44228360056877136 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/point-source |
| keywords[9].score | 0.41884639859199524 |
| keywords[9].display_name | Point source |
| keywords[10].id | https://openalex.org/keywords/galaxy |
| keywords[10].score | 0.3256160616874695 |
| keywords[10].display_name | Galaxy |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.25805002450942993 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/astrophysics |
| keywords[12].score | 0.24051928520202637 |
| keywords[12].display_name | Astrophysics |
| keywords[13].id | https://openalex.org/keywords/telecommunications |
| keywords[13].score | 0.14852270483970642 |
| keywords[13].display_name | Telecommunications |
| keywords[14].id | https://openalex.org/keywords/optics |
| keywords[14].score | 0.10401958227157593 |
| keywords[14].display_name | Optics |
| language | en |
| locations[0].id | doi:10.1016/j.ascom.2023.100728 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S107133554 |
| locations[0].source.issn | 2213-1337, 2213-1345 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2213-1337 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Astronomy and Computing |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Astronomy and Computing |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ascom.2023.100728 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5072812169 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3426-3269 |
| authorships[0].author.display_name | Baoqiang Lao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I189210763 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Physics and Astronomy, Yunnan University, Kunming, 650091, China |
| authorships[0].institutions[0].id | https://openalex.org/I189210763 |
| authorships[0].institutions[0].ror | https://ror.org/0040axw97 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I189210763 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Yunnan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | B. Lao |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Physics and Astronomy, Yunnan University, Kunming, 650091, China |
| authorships[1].author.id | https://openalex.org/A5063913402 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5125-695X |
| authorships[1].author.display_name | Sumit Jaiswal |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2799714274 |
| authorships[1].affiliations[0].raw_affiliation_string | Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, 20030, China |
| authorships[1].institutions[0].id | https://openalex.org/I2799714274 |
| authorships[1].institutions[0].ror | https://ror.org/003n8re58 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I2799714274 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Astronomical Observatory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | S. Jaiswal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, 20030, China |
| authorships[2].author.id | https://openalex.org/A5072694516 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0796-4078 |
| authorships[2].author.display_name | Zhen Zhao |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical and Information Engineering, University of Sydney, Sydney, 2006, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I129604602 |
| authorships[2].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | The University of Sydney |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Z. Zhao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical and Information Engineering, University of Sydney, Sydney, 2006, Australia |
| authorships[3].author.id | https://openalex.org/A5101690718 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0394-339X |
| authorships[3].author.display_name | Liyan Lin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I5343935 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information and Communication, Guilin University Of Electronic Technology, Guilin, 541004, China |
| authorships[3].institutions[0].id | https://openalex.org/I5343935 |
| authorships[3].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | L. Lin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Information and Communication, Guilin University Of Electronic Technology, Guilin, 541004, China |
| authorships[4].author.id | https://openalex.org/A5100378434 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0610-4308 |
| authorships[4].author.display_name | Jing Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I5343935 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Information and Communication, Guilin University Of Electronic Technology, Guilin, 541004, China |
| authorships[4].institutions[0].id | https://openalex.org/I5343935 |
| authorships[4].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | J. Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Information and Communication, Guilin University Of Electronic Technology, Guilin, 541004, China |
| authorships[5].author.id | https://openalex.org/A5090120766 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3464-5128 |
| authorships[5].author.display_name | Xiaohui Sun |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I189210763 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Physics and Astronomy, Yunnan University, Kunming, 650091, China |
| authorships[5].institutions[0].id | https://openalex.org/I189210763 |
| authorships[5].institutions[0].ror | https://ror.org/0040axw97 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I189210763 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Yunnan University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | X. Sun |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Physics and Astronomy, Yunnan University, Kunming, 650091, China |
| authorships[6].author.id | https://openalex.org/A5070912090 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2302-0613 |
| authorships[6].author.display_name | Sheng‐Li Qin |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I189210763 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Physics and Astronomy, Yunnan University, Kunming, 650091, China |
| authorships[6].institutions[0].id | https://openalex.org/I189210763 |
| authorships[6].institutions[0].ror | https://ror.org/0040axw97 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I189210763 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Yunnan University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | S.-L. Qin |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Physics and Astronomy, Yunnan University, Kunming, 650091, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ascom.2023.100728 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Radio sources segmentation and classification with deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10818 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3106 |
| primary_topic.subfield.display_name | Nuclear and High Energy Physics |
| primary_topic.display_name | Astrophysics and Cosmic Phenomena |
| related_works | https://openalex.org/W2528420922, https://openalex.org/W2245358137, https://openalex.org/W3010033880, https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W3167935049, https://openalex.org/W3029198973, https://openalex.org/W2142220522 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.ascom.2023.100728 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S107133554 |
| best_oa_location.source.issn | 2213-1337, 2213-1345 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2213-1337 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Astronomy and Computing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Astronomy and Computing |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ascom.2023.100728 |
| primary_location.id | doi:10.1016/j.ascom.2023.100728 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S107133554 |
| primary_location.source.issn | 2213-1337, 2213-1345 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2213-1337 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Astronomy and Computing |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Astronomy and Computing |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ascom.2023.100728 |
| publication_date | 2023-06-10 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4292665584, https://openalex.org/W3032874046, https://openalex.org/W2984175917, https://openalex.org/W4300973076, https://openalex.org/W3212770152, https://openalex.org/W3135185658, https://openalex.org/W2117336551, https://openalex.org/W2047002529, https://openalex.org/W2051672346, https://openalex.org/W2993182889, https://openalex.org/W2964382283, https://openalex.org/W2759874039, https://openalex.org/W2544513175, https://openalex.org/W6778485988, https://openalex.org/W2935426146, https://openalex.org/W2014119987, https://openalex.org/W3112447846, https://openalex.org/W6796402304, https://openalex.org/W2031489346, https://openalex.org/W1882938068, https://openalex.org/W2117233176, https://openalex.org/W3082230719, https://openalex.org/W2008196645, https://openalex.org/W2886313997, https://openalex.org/W6778980558, https://openalex.org/W2949165422, https://openalex.org/W2119696122, https://openalex.org/W6891822717, https://openalex.org/W6780945243, https://openalex.org/W6756427901, https://openalex.org/W2963150697, https://openalex.org/W2194775991, https://openalex.org/W2077947153, https://openalex.org/W2131053676, https://openalex.org/W3127713337, https://openalex.org/W4292828009, https://openalex.org/W6743597003, https://openalex.org/W6633486862, https://openalex.org/W4312940821, https://openalex.org/W3035358681, https://openalex.org/W2995155898, https://openalex.org/W3177712416, https://openalex.org/W2934424961, https://openalex.org/W2565639579, https://openalex.org/W6639102338, https://openalex.org/W2996704178, https://openalex.org/W3029757699, https://openalex.org/W6770493628, https://openalex.org/W4300962444, https://openalex.org/W2152334290, https://openalex.org/W2737163388, https://openalex.org/W2004114102, https://openalex.org/W639708223, https://openalex.org/W2343483153, https://openalex.org/W4313379306, https://openalex.org/W2973099681, https://openalex.org/W2786879317, https://openalex.org/W2110764733, https://openalex.org/W4220665887, https://openalex.org/W6632937060, https://openalex.org/W2748014834, https://openalex.org/W3175701034, https://openalex.org/W6679192999, https://openalex.org/W2073938066, https://openalex.org/W2864116548, https://openalex.org/W2147626801, https://openalex.org/W4294362702, https://openalex.org/W3014641072, https://openalex.org/W1978552873, https://openalex.org/W2001246374, https://openalex.org/W6797848700, https://openalex.org/W2805040647, https://openalex.org/W4283705601, https://openalex.org/W3177388720, https://openalex.org/W3088004402, https://openalex.org/W3135840912, https://openalex.org/W3015791034, https://openalex.org/W3098646784, https://openalex.org/W3104968552, https://openalex.org/W3105240173, https://openalex.org/W3098021058, https://openalex.org/W3103844616, https://openalex.org/W2053586251, https://openalex.org/W3183160592, https://openalex.org/W2942265585, https://openalex.org/W2186222003, https://openalex.org/W3105696779, https://openalex.org/W3006667536, https://openalex.org/W3099263889, https://openalex.org/W3204263121, https://openalex.org/W3102820823, https://openalex.org/W3100543655, https://openalex.org/W4224884895 |
| referenced_works_count | 93 |
| abstract_inverted_index.5 | 70 |
| abstract_inverted_index.I | 79 |
| abstract_inverted_index.a | 35, 54, 117, 121, 149 |
| abstract_inverted_index.II | 83 |
| abstract_inverted_index.We | 32, 112, 147 |
| abstract_inverted_index.at | 108 |
| abstract_inverted_index.be | 185 |
| abstract_inverted_index.is | 130 |
| abstract_inverted_index.of | 29, 45, 104, 127, 139, 163, 169, 178 |
| abstract_inverted_index.or | 73 |
| abstract_inverted_index.to | 57, 167, 172 |
| abstract_inverted_index.up | 166 |
| abstract_inverted_index.Sky | 107 |
| abstract_inverted_index.The | 65 |
| abstract_inverted_index.and | 8, 10, 16, 26, 53, 63, 87, 95, 133, 141, 160, 165, 198 |
| abstract_inverted_index.are | 67 |
| abstract_inverted_index.can | 11 |
| abstract_inverted_index.for | 23, 187 |
| abstract_inverted_index.has | 92, 116 |
| abstract_inverted_index.sky | 193 |
| abstract_inverted_index.the | 24, 42, 98, 101, 105, 142, 173, 179 |
| abstract_inverted_index.(CJ) | 89 |
| abstract_inverted_index.11.3 | 134 |
| abstract_inverted_index.15.6 | 131 |
| abstract_inverted_index.2014 | 175 |
| abstract_inverted_index.Mask | 46, 144 |
| abstract_inverted_index.Type | 78, 82 |
| abstract_inverted_index.also | 184 |
| abstract_inverted_index.been | 93 |
| abstract_inverted_index.data | 99, 176 |
| abstract_inverted_index.deep | 36 |
| abstract_inverted_index.from | 100 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.high | 6, 118 |
| abstract_inverted_index.into | 69 |
| abstract_inverted_index.like | 191 |
| abstract_inverted_index.mean | 122 |
| abstract_inverted_index.than | 137 |
| abstract_inverted_index.that | 40, 114, 138 |
| abstract_inverted_index.uses | 41 |
| abstract_inverted_index.with | 97, 120 |
| abstract_inverted_index.(CS), | 76 |
| abstract_inverted_index.(HT), | 86 |
| abstract_inverted_index.(Mask | 51 |
| abstract_inverted_index.98.5% | 168 |
| abstract_inverted_index.98.6% | 162 |
| abstract_inverted_index.FIRST | 150, 180 |
| abstract_inverted_index.Faint | 102 |
| abstract_inverted_index.R-CNN | 145 |
| abstract_inverted_index.Radio | 106 |
| abstract_inverted_index.block | 56 |
| abstract_inverted_index.could | 183 |
| abstract_inverted_index.found | 113 |
| abstract_inverted_index.great | 21 |
| abstract_inverted_index.large | 1 |
| abstract_inverted_index.other | 188 |
| abstract_inverted_index.radio | 2, 60, 196, 200 |
| abstract_inverted_index.tasks | 190 |
| abstract_inverted_index.using | 154 |
| abstract_inverted_index.which | 19, 129, 156 |
| abstract_inverted_index.(FRI), | 80 |
| abstract_inverted_index.77.8%, | 128 |
| abstract_inverted_index.Images | 103 |
| abstract_inverted_index.Modern | 0 |
| abstract_inverted_index.Neural | 49 |
| abstract_inverted_index.R-CNN) | 52 |
| abstract_inverted_index.brings | 20 |
| abstract_inverted_index.higher | 136 |
| abstract_inverted_index.latest | 174 |
| abstract_inverted_index.points | 132, 135 |
| abstract_inverted_index.source | 38 |
| abstract_inverted_index.(FRII), | 84 |
| abstract_inverted_index.835,435 | 158 |
| abstract_inverted_index.Compact | 72 |
| abstract_inverted_index.HeTu-v1 | 140 |
| abstract_inverted_index.HeTu-v2 | 91, 115, 182 |
| abstract_inverted_index.achieve | 58 |
| abstract_inverted_index.average | 123 |
| abstract_inverted_index.catalog | 152 |
| abstract_inverted_index.diffuse | 17 |
| abstract_inverted_index.models, | 194 |
| abstract_inverted_index.present | 33 |
| abstract_inverted_index.release | 177 |
| abstract_inverted_index.resolve | 12 |
| abstract_inverted_index.sources | 61, 66, 75, 159 |
| abstract_inverted_index.survey. | 181 |
| abstract_inverted_index.surveys | 4 |
| abstract_inverted_index.trained | 94 |
| abstract_inverted_index.(FIRST). | 111 |
| abstract_inverted_index.Core-Jet | 88 |
| abstract_inverted_index.HeTu-v2, | 34, 155 |
| abstract_inverted_index.Networks | 50 |
| abstract_inverted_index.accuracy | 119, 170 |
| abstract_inverted_index.achieves | 161 |
| abstract_inverted_index.building | 192 |
| abstract_inverted_index.combined | 43 |
| abstract_inverted_index.compared | 171 |
| abstract_inverted_index.contains | 157 |
| abstract_inverted_index.detector | 39 |
| abstract_inverted_index.employed | 186 |
| abstract_inverted_index.extended | 15, 30 |
| abstract_inverted_index.networks | 44 |
| abstract_inverted_index.original | 143 |
| abstract_inverted_index.produced | 148 |
| abstract_inverted_index.sources. | 31, 90 |
| abstract_inverted_index.($AP_{\rm | 125 |
| abstract_inverted_index.Head-Tail | 85 |
| abstract_inverted_index.continuum | 3 |
| abstract_inverted_index.detection | 25 |
| abstract_inverted_index.galaxies. | 201 |
| abstract_inverted_index.precision | 124 |
| abstract_inverted_index.validated | 96 |
| abstract_inverted_index.Twenty-one | 109 |
| abstract_inverted_index.challenges | 22 |
| abstract_inverted_index.classified | 68 |
| abstract_inverted_index.emissions, | 18 |
| abstract_inverted_index.point-like | 74 |
| abstract_inverted_index.previously | 13 |
| abstract_inverted_index.undetected | 14 |
| abstract_inverted_index.@50:5:95}$) | 126 |
| abstract_inverted_index.Transformer | 55 |
| abstract_inverted_index.associating | 195 |
| abstract_inverted_index.categories: | 71 |
| abstract_inverted_index.centimeters | 110 |
| abstract_inverted_index.classifying | 199 |
| abstract_inverted_index.components, | 197 |
| abstract_inverted_index.resolution, | 9 |
| abstract_inverted_index.sensitivity | 7 |
| abstract_inverted_index.(FIRST-HeTu) | 153 |
| abstract_inverted_index.Region-based | 47 |
| abstract_inverted_index.astronomical | 189 |
| abstract_inverted_index.completeness | 164 |
| abstract_inverted_index.high-quality | 59 |
| abstract_inverted_index.segmentation | 62 |
| abstract_inverted_index.Convolutional | 48 |
| abstract_inverted_index.morphological | 27, 151 |
| abstract_inverted_index.respectively. | 146 |
| abstract_inverted_index.Fanaroff-Riley | 77, 81 |
| abstract_inverted_index.classification | 28 |
| abstract_inverted_index.learning-based | 37 |
| abstract_inverted_index.classification. | 64 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5072812169 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I189210763 |
| citation_normalized_percentile.value | 0.95775242 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |