Radio Sources Segmentation and Classification with Deep Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.01426
Modern large radio continuum surveys have high sensitivity and resolution, and can resolve previously undetected extended and diffuse emissions, which brings great challenges for the detection and morphological classification of extended sources. We present HeTu-v2, a deep learning-based source detector that uses the combined networks of Mask Region-based Convolutional Neural Networks (Mask R-CNN) and a Transformer block to achieve high-quality radio sources segmentation and classification. The sources are classified into 5 categories: Compact or point-like sources (CS), Fanaroff-Riley Type I (FRI), Fanaroff-Riley Type II (FRII), Head-Tail (HT), and Core-Jet (CJ) sources. HeTu-v2 has been trained and validated with the data from the Faint Images of the Radio Sky at Twenty-one centimeters (FIRST). We found that HeTu-v2 has a high accuracy with a mean average precision ($AP_{\rm @50:5:95}$) of 77.8%, which is 15.6 points and 11.3 points higher than that of HeTu-v1 and the original Mask R-CNN respectively. We produced a FIRST morphological catalog (FIRST-HeTu) using HeTu-v2, which contains 835,435 sources and achieves 98.6% of completeness and up to 98.5% of accuracy compared to the latest 2014 data release of the FIRST survey. HeTu-v2 could also be employed for other astronomical tasks like building sky models, associating radio components, and classifying radio galaxies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.01426
- https://arxiv.org/pdf/2306.01426
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4379538466
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4379538466Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.01426Digital Object Identifier
- Title
-
Radio Sources Segmentation and Classification with Deep LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-02Full publication date if available
- Authors
-
Baoqiang Lao, Sumit Jaiswal, Zhen Zhao, Leping Lin, Junyi Wang, Xiaohui Sun, Sheng‐Li QinList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.01426Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.01426Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.01426Direct OA link when available
- Concepts
-
Sky, Artificial intelligence, Convolutional neural network, Computer science, Segmentation, Deep learning, Detector, Radio galaxy, Pattern recognition (psychology), Galaxy, Physics, Astrophysics, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4379538466 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.01426 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.01426 |
| ids.openalex | https://openalex.org/W4379538466 |
| fwci | 0.0 |
| type | preprint |
| title | Radio Sources Segmentation and Classification with Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12450 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9905999898910522 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3103 |
| topics[0].subfield.display_name | Astronomy and Astrophysics |
| topics[0].display_name | Radio Astronomy Observations and Technology |
| topics[1].id | https://openalex.org/T10818 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9898999929428101 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3106 |
| topics[1].subfield.display_name | Nuclear and High Energy Physics |
| topics[1].display_name | Astrophysics and Cosmic Phenomena |
| topics[2].id | https://openalex.org/T10752 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9101999998092651 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Terahertz technology and applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C73329638 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5776458978652954 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q527 |
| concepts[0].display_name | Sky |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5638799071311951 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5502340197563171 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5492234230041504 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5402751564979553 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5148460268974304 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C94915269 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4923776388168335 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[6].display_name | Detector |
| concepts[7].id | https://openalex.org/C20249676 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4884707033634186 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q217012 |
| concepts[7].display_name | Radio galaxy |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.436942994594574 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C98444146 |
| concepts[9].level | 2 |
| concepts[9].score | 0.27598223090171814 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q318 |
| concepts[9].display_name | Galaxy |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.26880496740341187 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C44870925 |
| concepts[11].level | 1 |
| concepts[11].score | 0.20948991179466248 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[11].display_name | Astrophysics |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.11899960041046143 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/sky |
| keywords[0].score | 0.5776458978652954 |
| keywords[0].display_name | Sky |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5638799071311951 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.5502340197563171 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5492234230041504 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.5402751564979553 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.5148460268974304 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/detector |
| keywords[6].score | 0.4923776388168335 |
| keywords[6].display_name | Detector |
| keywords[7].id | https://openalex.org/keywords/radio-galaxy |
| keywords[7].score | 0.4884707033634186 |
| keywords[7].display_name | Radio galaxy |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.436942994594574 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/galaxy |
| keywords[9].score | 0.27598223090171814 |
| keywords[9].display_name | Galaxy |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.26880496740341187 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/astrophysics |
| keywords[11].score | 0.20948991179466248 |
| keywords[11].display_name | Astrophysics |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.11899960041046143 |
| keywords[12].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.01426 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.01426 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.01426 |
| locations[1].id | doi:10.48550/arxiv.2306.01426 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.01426 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5072812169 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3426-3269 |
| authorships[0].author.display_name | Baoqiang Lao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lao, Baoqiang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5063913402 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5125-695X |
| authorships[1].author.display_name | Sumit Jaiswal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jaiswal, Sumit |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5072694516 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0796-4078 |
| authorships[2].author.display_name | Zhen Zhao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhao, Zhen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5047557484 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Leping Lin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lin, Leping |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100649294 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9914-7157 |
| authorships[4].author.display_name | Junyi Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Junyi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5090120766 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3464-5128 |
| authorships[5].author.display_name | Xiaohui Sun |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sun, Xiaohui |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5070912090 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2302-0613 |
| authorships[6].author.display_name | Sheng‐Li Qin |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Qin, Shengli |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.01426 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Radio Sources Segmentation and Classification with Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12450 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9905999898910522 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3103 |
| primary_topic.subfield.display_name | Astronomy and Astrophysics |
| primary_topic.display_name | Radio Astronomy Observations and Technology |
| related_works | https://openalex.org/W2245358137, https://openalex.org/W2528420922, https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W3167935049, https://openalex.org/W3029198973 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.01426 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.01426 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.01426 |
| primary_location.id | pmh:oai:arXiv.org:2306.01426 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.01426 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.01426 |
| publication_date | 2023-06-02 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 70 |
| abstract_inverted_index.I | 79 |
| abstract_inverted_index.a | 35, 54, 117, 121, 149 |
| abstract_inverted_index.II | 83 |
| abstract_inverted_index.We | 32, 112, 147 |
| abstract_inverted_index.at | 108 |
| abstract_inverted_index.be | 185 |
| abstract_inverted_index.is | 130 |
| abstract_inverted_index.of | 29, 45, 104, 127, 139, 163, 169, 178 |
| abstract_inverted_index.or | 73 |
| abstract_inverted_index.to | 57, 167, 172 |
| abstract_inverted_index.up | 166 |
| abstract_inverted_index.Sky | 107 |
| abstract_inverted_index.The | 65 |
| abstract_inverted_index.and | 8, 10, 16, 26, 53, 63, 87, 95, 133, 141, 160, 165, 198 |
| abstract_inverted_index.are | 67 |
| abstract_inverted_index.can | 11 |
| abstract_inverted_index.for | 23, 187 |
| abstract_inverted_index.has | 92, 116 |
| abstract_inverted_index.sky | 193 |
| abstract_inverted_index.the | 24, 42, 98, 101, 105, 142, 173, 179 |
| abstract_inverted_index.(CJ) | 89 |
| abstract_inverted_index.11.3 | 134 |
| abstract_inverted_index.15.6 | 131 |
| abstract_inverted_index.2014 | 175 |
| abstract_inverted_index.Mask | 46, 144 |
| abstract_inverted_index.Type | 78, 82 |
| abstract_inverted_index.also | 184 |
| abstract_inverted_index.been | 93 |
| abstract_inverted_index.data | 99, 176 |
| abstract_inverted_index.deep | 36 |
| abstract_inverted_index.from | 100 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.high | 6, 118 |
| abstract_inverted_index.into | 69 |
| abstract_inverted_index.like | 191 |
| abstract_inverted_index.mean | 122 |
| abstract_inverted_index.than | 137 |
| abstract_inverted_index.that | 40, 114, 138 |
| abstract_inverted_index.uses | 41 |
| abstract_inverted_index.with | 97, 120 |
| abstract_inverted_index.(CS), | 76 |
| abstract_inverted_index.(HT), | 86 |
| abstract_inverted_index.(Mask | 51 |
| abstract_inverted_index.98.5% | 168 |
| abstract_inverted_index.98.6% | 162 |
| abstract_inverted_index.FIRST | 150, 180 |
| abstract_inverted_index.Faint | 102 |
| abstract_inverted_index.R-CNN | 145 |
| abstract_inverted_index.Radio | 106 |
| abstract_inverted_index.block | 56 |
| abstract_inverted_index.could | 183 |
| abstract_inverted_index.found | 113 |
| abstract_inverted_index.great | 21 |
| abstract_inverted_index.large | 1 |
| abstract_inverted_index.other | 188 |
| abstract_inverted_index.radio | 2, 60, 196, 200 |
| abstract_inverted_index.tasks | 190 |
| abstract_inverted_index.using | 154 |
| abstract_inverted_index.which | 19, 129, 156 |
| abstract_inverted_index.(FRI), | 80 |
| abstract_inverted_index.77.8%, | 128 |
| abstract_inverted_index.Images | 103 |
| abstract_inverted_index.Modern | 0 |
| abstract_inverted_index.Neural | 49 |
| abstract_inverted_index.R-CNN) | 52 |
| abstract_inverted_index.brings | 20 |
| abstract_inverted_index.higher | 136 |
| abstract_inverted_index.latest | 174 |
| abstract_inverted_index.points | 132, 135 |
| abstract_inverted_index.source | 38 |
| abstract_inverted_index.(FRII), | 84 |
| abstract_inverted_index.835,435 | 158 |
| abstract_inverted_index.Compact | 72 |
| abstract_inverted_index.HeTu-v1 | 140 |
| abstract_inverted_index.HeTu-v2 | 91, 115, 182 |
| abstract_inverted_index.achieve | 58 |
| abstract_inverted_index.average | 123 |
| abstract_inverted_index.catalog | 152 |
| abstract_inverted_index.diffuse | 17 |
| abstract_inverted_index.models, | 194 |
| abstract_inverted_index.present | 33 |
| abstract_inverted_index.release | 177 |
| abstract_inverted_index.resolve | 12 |
| abstract_inverted_index.sources | 61, 66, 75, 159 |
| abstract_inverted_index.survey. | 181 |
| abstract_inverted_index.surveys | 4 |
| abstract_inverted_index.trained | 94 |
| abstract_inverted_index.(FIRST). | 111 |
| abstract_inverted_index.Core-Jet | 88 |
| abstract_inverted_index.HeTu-v2, | 34, 155 |
| abstract_inverted_index.Networks | 50 |
| abstract_inverted_index.accuracy | 119, 170 |
| abstract_inverted_index.achieves | 161 |
| abstract_inverted_index.building | 192 |
| abstract_inverted_index.combined | 43 |
| abstract_inverted_index.compared | 171 |
| abstract_inverted_index.contains | 157 |
| abstract_inverted_index.detector | 39 |
| abstract_inverted_index.employed | 186 |
| abstract_inverted_index.extended | 15, 30 |
| abstract_inverted_index.networks | 44 |
| abstract_inverted_index.original | 143 |
| abstract_inverted_index.produced | 148 |
| abstract_inverted_index.sources. | 31, 90 |
| abstract_inverted_index.($AP_{\rm | 125 |
| abstract_inverted_index.Head-Tail | 85 |
| abstract_inverted_index.continuum | 3 |
| abstract_inverted_index.detection | 25 |
| abstract_inverted_index.galaxies. | 201 |
| abstract_inverted_index.precision | 124 |
| abstract_inverted_index.validated | 96 |
| abstract_inverted_index.Twenty-one | 109 |
| abstract_inverted_index.challenges | 22 |
| abstract_inverted_index.classified | 68 |
| abstract_inverted_index.emissions, | 18 |
| abstract_inverted_index.point-like | 74 |
| abstract_inverted_index.previously | 13 |
| abstract_inverted_index.undetected | 14 |
| abstract_inverted_index.@50:5:95}$) | 126 |
| abstract_inverted_index.Transformer | 55 |
| abstract_inverted_index.associating | 195 |
| abstract_inverted_index.categories: | 71 |
| abstract_inverted_index.centimeters | 110 |
| abstract_inverted_index.classifying | 199 |
| abstract_inverted_index.components, | 197 |
| abstract_inverted_index.resolution, | 9 |
| abstract_inverted_index.sensitivity | 7 |
| abstract_inverted_index.(FIRST-HeTu) | 153 |
| abstract_inverted_index.Region-based | 47 |
| abstract_inverted_index.astronomical | 189 |
| abstract_inverted_index.completeness | 164 |
| abstract_inverted_index.high-quality | 59 |
| abstract_inverted_index.segmentation | 62 |
| abstract_inverted_index.Convolutional | 48 |
| abstract_inverted_index.morphological | 27, 151 |
| abstract_inverted_index.respectively. | 146 |
| abstract_inverted_index.Fanaroff-Riley | 77, 81 |
| abstract_inverted_index.classification | 28 |
| abstract_inverted_index.learning-based | 37 |
| abstract_inverted_index.classification. | 64 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.10080248 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |